{"title":"Resilience Assessment and Importance Measure for Interdependent Critical Infrastructures","authors":"Xing Liu, Yiping Fang, E. Ferrario, E. Zio","doi":"10.1115/1.4051196","DOIUrl":null,"url":null,"abstract":"\n Based upon a novel control-based dynamic modeling framework, this paper proposes two new indicators, i.e., resilience by mitigation and resilience by recovery, for the resilience analysis of interdependent critical infrastructures (ICIs) under disruptions. The former is built from the protection activities before and during the mitigation phase of a disruptive event, and the latter is the result of the restoration efforts, which take place at the recovery phase. The total resilience of ICIs combines both of these two aspects by taking into account the preferences of the decision makers. We demonstrate the applicability of the proposed modeling framework and metrics in a case study involving ICIs made of a power grid and a gas distribution system. Owing to the new resilience indicators, the priorities of subsystems and links within ICIs at different phases can be ranked; therefore, different resilience strategies at different phases of disruptive events are compared. The results show that proposed metrics can be used by stakeholders of ICIs on improving the effectiveness of system protection measurements.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"538 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Based upon a novel control-based dynamic modeling framework, this paper proposes two new indicators, i.e., resilience by mitigation and resilience by recovery, for the resilience analysis of interdependent critical infrastructures (ICIs) under disruptions. The former is built from the protection activities before and during the mitigation phase of a disruptive event, and the latter is the result of the restoration efforts, which take place at the recovery phase. The total resilience of ICIs combines both of these two aspects by taking into account the preferences of the decision makers. We demonstrate the applicability of the proposed modeling framework and metrics in a case study involving ICIs made of a power grid and a gas distribution system. Owing to the new resilience indicators, the priorities of subsystems and links within ICIs at different phases can be ranked; therefore, different resilience strategies at different phases of disruptive events are compared. The results show that proposed metrics can be used by stakeholders of ICIs on improving the effectiveness of system protection measurements.