J. Wuite, Ludivine Libert, T. Nagler, T. Jóhannesson
{"title":"Continuous monitoring of ice dynamics in Iceland with Sentinel-1 satellite radar images","authors":"J. Wuite, Ludivine Libert, T. Nagler, T. Jóhannesson","doi":"10.33799/jokull2022.72.001","DOIUrl":null,"url":null,"abstract":"In recent years, satellite remote sensing has revolutionized observations of glacier dynamics enabling for the first time the generation of detailed ice-velocity fields at regular intervals for Icelandic glaciers. We generated dense time series of ice-velocity fields from 2014 to 2020 exploiting the continuous acquisition of Sentinel-1 SAR using the offset-tracking technique. The fastest ice flow, with velocities up to 400–800 metres per year, is observed in the middle and lower part of the main outlet glaciers of the ice caps that span a large elevation range in the areas of high precipitation in the South and Southeast of Iceland. Several outlet glaciers of Vatnajökull, such as Skeiðarárjökull and Breiðamerkurjökull, draining towards the South and Southeast, show high-ice-speed channels with pronounced shearing zones where the ice speed increases by an order of magnitude within a distance of only a few ice thicknesses. Velocities on the order of a few tens of metres per year, and up to 50–100 metres per year, are observed on the large surge-type outlet glaciers of N- and W-Vatnajökull and generally on glaciers in the central Icelandic highland and in the northern and western part of the country. Slow-moving ice is observed along the main ice divides and near the glacier margins. The velocity data set is affected by gaps due to decorrelation, particularly during summer, because of temporal variations in the radar-image texture. The ice-velocity fields derived in this study from Sentinel-1 data agree well with other data sets, although these are affected by a larger number of outliers and data gaps, particularly in the accumulation areas. The generated velocity time series can be used for monitoring long-term dynamic trends, seasonal variations and for studying glaciological events such as surges or jökulhlaups.","PeriodicalId":56284,"journal":{"name":"Jokull","volume":"26 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jokull","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33799/jokull2022.72.001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, satellite remote sensing has revolutionized observations of glacier dynamics enabling for the first time the generation of detailed ice-velocity fields at regular intervals for Icelandic glaciers. We generated dense time series of ice-velocity fields from 2014 to 2020 exploiting the continuous acquisition of Sentinel-1 SAR using the offset-tracking technique. The fastest ice flow, with velocities up to 400–800 metres per year, is observed in the middle and lower part of the main outlet glaciers of the ice caps that span a large elevation range in the areas of high precipitation in the South and Southeast of Iceland. Several outlet glaciers of Vatnajökull, such as Skeiðarárjökull and Breiðamerkurjökull, draining towards the South and Southeast, show high-ice-speed channels with pronounced shearing zones where the ice speed increases by an order of magnitude within a distance of only a few ice thicknesses. Velocities on the order of a few tens of metres per year, and up to 50–100 metres per year, are observed on the large surge-type outlet glaciers of N- and W-Vatnajökull and generally on glaciers in the central Icelandic highland and in the northern and western part of the country. Slow-moving ice is observed along the main ice divides and near the glacier margins. The velocity data set is affected by gaps due to decorrelation, particularly during summer, because of temporal variations in the radar-image texture. The ice-velocity fields derived in this study from Sentinel-1 data agree well with other data sets, although these are affected by a larger number of outliers and data gaps, particularly in the accumulation areas. The generated velocity time series can be used for monitoring long-term dynamic trends, seasonal variations and for studying glaciological events such as surges or jökulhlaups.
期刊介绍:
Jökull publishes research papers, notes and review articles concerning all aspects of the Earth Sciences. The
journal is primarily aimed at being an international forum
for geoscience research in Iceland. Specific areas of coverage include glaciology, glacial geology, physical geography,
general geology, petrology, volcanology, geothermal research, geophysics, meteorology, hydrology and oceanography. Jökull also publishes research notes and reports from
glacier expeditions, book reviews, and material of interest to
the members of the Icelandic Glaciological and Geological
Societies