{"title":"Reduction of Permittivity in Epoxy Nanocomposites at Low Nano-filler Loadings","authors":"S. Singha, M. Thomas","doi":"10.1109/CEIDP.2008.4772804","DOIUrl":null,"url":null,"abstract":"Experimental studies reveal a reduction in the values of permittivity for epoxy nanocomposites at low filler loadings as compared to neat epoxy over a wide frequency range. This permittivity reduction is attributed to the interaction dynamics between nanoparticles and epoxy chains at the interface region and interestingly, this interaction has also been found to influence the glass transition temperatures (Tg) of the examined nanocomposite systems. Accordingly, a dual nanolayer interface model for an epoxy based nanocomposite system is analyzed to explain the obtained permittivity characteristics.","PeriodicalId":6381,"journal":{"name":"2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"439 1","pages":"726-729"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2008.4772804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Experimental studies reveal a reduction in the values of permittivity for epoxy nanocomposites at low filler loadings as compared to neat epoxy over a wide frequency range. This permittivity reduction is attributed to the interaction dynamics between nanoparticles and epoxy chains at the interface region and interestingly, this interaction has also been found to influence the glass transition temperatures (Tg) of the examined nanocomposite systems. Accordingly, a dual nanolayer interface model for an epoxy based nanocomposite system is analyzed to explain the obtained permittivity characteristics.