Fourth-Generation District Heating and Motivation Tariffs

H. Lund, J. E. Thorsen, Steen Schelle Jensen, F. P. Madsen
{"title":"Fourth-Generation District Heating and Motivation Tariffs","authors":"H. Lund, J. E. Thorsen, Steen Schelle Jensen, F. P. Madsen","doi":"10.1115/1.4053420","DOIUrl":null,"url":null,"abstract":"\n Future district heating systems and technologies—also known as fourth-generation district heating—have a potentially important role to play in the green transition of societies. The implementation of fourth-generation district heating involves adjustments in the demand side to allow for low temperature supply. In order to facilitate such changes, district heating supply companies have in recent years introduced tariffs with penalties for high return temperatures and benefits for low return temperatures. This paper describes the case of a housing community of 17 buildings in their attempts to adjust to such tariffs as an integrated part of connecting to district heating. Replacing domestic hot water tanks with instantaneous heat exchangers and introducing smart meters resulted in abilities to lower the return temperature from around 40 °C to around 30 °C. However, the current design of the motivation tariffs does not yet fully compensate the consumers because the supply company provides unnecessarily high supply temperatures. Based on such efforts, this paper discusses the fairness and effectiveness of the tariffs and provides recommendations for improving them.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Future district heating systems and technologies—also known as fourth-generation district heating—have a potentially important role to play in the green transition of societies. The implementation of fourth-generation district heating involves adjustments in the demand side to allow for low temperature supply. In order to facilitate such changes, district heating supply companies have in recent years introduced tariffs with penalties for high return temperatures and benefits for low return temperatures. This paper describes the case of a housing community of 17 buildings in their attempts to adjust to such tariffs as an integrated part of connecting to district heating. Replacing domestic hot water tanks with instantaneous heat exchangers and introducing smart meters resulted in abilities to lower the return temperature from around 40 °C to around 30 °C. However, the current design of the motivation tariffs does not yet fully compensate the consumers because the supply company provides unnecessarily high supply temperatures. Based on such efforts, this paper discusses the fairness and effectiveness of the tariffs and provides recommendations for improving them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第四代区域供热和激励关税
未来的区域供热系统和技术——也被称为第四代区域供热——在社会的绿色转型中发挥着潜在的重要作用。第四代区域供热的实施涉及需求侧的调整,以允许低温供应。为了促进这种变化,区域供热供应公司近年来引入了对高返回温度的惩罚和对低返回温度的好处的关税。本文描述了一个有17栋建筑的住房社区的案例,他们试图调整这种关税,作为连接区域供热的一个组成部分。用瞬时热交换器替换家用热水箱,并引入智能电表,使回水温度从40°C左右降低到30°C左右。然而,目前的激励电价设计还不能完全补偿消费者,因为供应公司提供了不必要的高供应温度。在此基础上,本文讨论了关税的公平性和有效性,并提出了改进关税的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current Trends and Innovations in Enhancing the Aerodynamic Performance of Small-Scale, Horizontal Axis Wind Turbines: A Review Effect of Filament Color and Fused Deposition Modeling/Fused Filament Fabrication Process on the Development of Bistability in Switchable Bistable Squares Thermodynamic Analysis of Comprehensive Performance of Carbon Dioxide(R744) and Its Mixture With Ethane(R170) Used in Refrigeration and Heating System at Low Evaporation Temperature Current Status and Emerging Techniques for Measuring the Dielectric Properties of Biological Tissues Replacing All Fossil Fuels With Nuclear-Enabled Hydrogen, Cellulosic Hydrocarbon Biofuels, and Dispatchable Electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1