Active rescheduling for automated guided vehicle systems

L. Interrante, D. Rochowiak
{"title":"Active rescheduling for automated guided vehicle systems","authors":"L. Interrante, D. Rochowiak","doi":"10.1049/ISE.1994.0012","DOIUrl":null,"url":null,"abstract":"The paper examines the use of knowledge-based techniques to generate a framework for the active rescheduling of an automated guided vehicle system in a manufacturing environment. Our approach to active rescheduling uses ‘cues’ drawn from events on the shop-floor to trigger rescheduling. Simulation experiments are used to capture knowledge about the shop-floor and various scheduling strategies. An extensible agent architecture is developed to facilitate active rescheduling.","PeriodicalId":55165,"journal":{"name":"Engineering Intelligent Systems for Electrical Engineering and Communications","volume":"163 1","pages":"87-100"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Intelligent Systems for Electrical Engineering and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ISE.1994.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper examines the use of knowledge-based techniques to generate a framework for the active rescheduling of an automated guided vehicle system in a manufacturing environment. Our approach to active rescheduling uses ‘cues’ drawn from events on the shop-floor to trigger rescheduling. Simulation experiments are used to capture knowledge about the shop-floor and various scheduling strategies. An extensible agent architecture is developed to facilitate active rescheduling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动导向车辆系统的主动重新调度
本文研究了在制造环境中使用基于知识的技术为自动引导车辆系统的主动重新调度生成框架。我们的主动重新调度方法使用从车间事件中提取的“线索”来触发重新调度。仿真实验用于获取车间和各种调度策略的知识。开发了一个可扩展的代理体系结构来促进主动重新调度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel genetic algorithm for generation expansion planning Neural network based classification system for texture images with its applications TIGER: real-time situation assessment of dynamic systems Auto-associative memory using n-tuple techniques Scheduling theory and practice: Minsk group results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1