A Novel Mean Stress-Independent Fatigue Model for Bonded Joints With Ductile Adhesives

Marco Gerini-Romagnoli, S. Nassar
{"title":"A Novel Mean Stress-Independent Fatigue Model for Bonded Joints With Ductile Adhesives","authors":"Marco Gerini-Romagnoli, S. Nassar","doi":"10.1115/imece2021-70176","DOIUrl":null,"url":null,"abstract":"\n A mean stress-independent lap shear fatigue model is proposed for Aluminum 2024 alloy Single Lap Joints (SLJ) that are bonded with ductile, polyurethane-based, adhesive. Fatigue data is generated in the High Cycle Fatigue range, for 4 values of mean stress and multiple levels of alternating load. Individual S-N curves are constructed, for each value of mean stress, and the results are statistically analyzed. A separate logarithmic regression of the entire pool of data is performed, considering maximum stress and fatigue life of the samples. The test data align along the same regression line. As a result, the amount of tests to perform for durability characterization of single lap joints bonded with ductile adhesive can potentially be reduced.\n High sampling frequency information of the displacement of the specimens during fatigue tests is periodically acquired and filtered. The creep-like curve describing the evolution of the mean displacement during the fatigue tests suggests that cold flow phenomena could trigger fatigue failure, rather than the propagation of a crack.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mean stress-independent lap shear fatigue model is proposed for Aluminum 2024 alloy Single Lap Joints (SLJ) that are bonded with ductile, polyurethane-based, adhesive. Fatigue data is generated in the High Cycle Fatigue range, for 4 values of mean stress and multiple levels of alternating load. Individual S-N curves are constructed, for each value of mean stress, and the results are statistically analyzed. A separate logarithmic regression of the entire pool of data is performed, considering maximum stress and fatigue life of the samples. The test data align along the same regression line. As a result, the amount of tests to perform for durability characterization of single lap joints bonded with ductile adhesive can potentially be reduced. High sampling frequency information of the displacement of the specimens during fatigue tests is periodically acquired and filtered. The creep-like curve describing the evolution of the mean displacement during the fatigue tests suggests that cold flow phenomena could trigger fatigue failure, rather than the propagation of a crack.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的塑性胶粘剂粘结接头平均应力无关疲劳模型
提出了一种基于韧性聚氨酯胶粘剂的2024铝合金单搭接接头(SLJ)的平均应力无关搭接剪切疲劳模型。在高周疲劳范围内生成4个平均应力值和多个交变载荷水平的疲劳数据。对每个平均应力值分别构造S-N曲线,并对结果进行统计分析。考虑到样品的最大应力和疲劳寿命,对整个数据池进行了单独的对数回归。测试数据沿着相同的回归线排列。因此,对使用韧性粘合剂粘合的单搭接接头的耐久性特性进行测试的数量可能会减少。对疲劳试验过程中试样位移的高采样频率信息进行周期性采集和过滤。蠕变曲线描述了疲劳试验期间平均位移的演变,表明冷流动现象可能引发疲劳破坏,而不是裂纹的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS) Crystalline Phase Changes Due to High-Speed Projectiles Impact on HY100 Steel Mechanical Properties of Snap-Fits Fabricated by Selective Laser Sintering From Polyamide Chemical Structure Analysis of Carbon-Doped Silicon Oxide Thin Films by Plasma-Enhanced Chemical Vapor Deposition of Tetrakis(Trimethylsilyloxy)Silane Precursor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1