{"title":"Tonal noise suppression of an underexpanded orifice jet upon impingement over corrugated geometries","authors":"D. Sarangi, Krishnamurthy Srinivasan","doi":"10.1115/1.4054254","DOIUrl":null,"url":null,"abstract":"\n The current study investigates the noise generation of an orifice jet upon impingement over different corrugated geometries for different nozzle pressure ratios. Semi-circular corrugations of different pitch lengths are considered for this study. A comparison of corrugated geometries is made with the flat plate. A standoff distance of 3.5 times jet diameter is considered. Several tones and their harmonics of the feedback loops established between the orifice exit and the plates are analyzed. The far-field acoustic spectra show that the corrugated geometries emit less noise at subsonic speed compared to supersonic speed. A reduction of overall sound pressure level (OASPL) up to a range of 3 dB to 8 dB is observed for the corrugated plate compared to the base plate at the subsonic range. The tonal noise is reduced for the corrugated geometries at all NPRs. The wavelength of the primary tones is compared with the pitch length of semi-circular corrugations. This indicates that semi- circular corrugations reduce the wavelength of fundamental tones and increase the time required to complete the feedback loop. Schlieren images show the presence of the acoustic feedback loop and standing waves near the impingement region for the flat plate. The flow field in between the semi-circular corrugations is analyzed by solving the large eddy simulation. The directivity study shows a reduction in OASPL value at the upstream direction at NPR 4 and 4.8 for the corrugated geometries.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"61 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054254","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1
Abstract
The current study investigates the noise generation of an orifice jet upon impingement over different corrugated geometries for different nozzle pressure ratios. Semi-circular corrugations of different pitch lengths are considered for this study. A comparison of corrugated geometries is made with the flat plate. A standoff distance of 3.5 times jet diameter is considered. Several tones and their harmonics of the feedback loops established between the orifice exit and the plates are analyzed. The far-field acoustic spectra show that the corrugated geometries emit less noise at subsonic speed compared to supersonic speed. A reduction of overall sound pressure level (OASPL) up to a range of 3 dB to 8 dB is observed for the corrugated plate compared to the base plate at the subsonic range. The tonal noise is reduced for the corrugated geometries at all NPRs. The wavelength of the primary tones is compared with the pitch length of semi-circular corrugations. This indicates that semi- circular corrugations reduce the wavelength of fundamental tones and increase the time required to complete the feedback loop. Schlieren images show the presence of the acoustic feedback loop and standing waves near the impingement region for the flat plate. The flow field in between the semi-circular corrugations is analyzed by solving the large eddy simulation. The directivity study shows a reduction in OASPL value at the upstream direction at NPR 4 and 4.8 for the corrugated geometries.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.