A Machine Learning Model on Virtual University of Senegal's Educational Data Based On Lambda Architecture

S. M. Gueye, A. Diop, Amadou Dahirou Gueye
{"title":"A Machine Learning Model on Virtual University of Senegal's Educational Data Based On Lambda Architecture","authors":"S. M. Gueye, A. Diop, Amadou Dahirou Gueye","doi":"10.23919/EECSI50503.2020.9251903","DOIUrl":null,"url":null,"abstract":"Nowadays, a new form of learning has emerged in higher education. This is e-Learning. Lessons are taught on a Learning Content Management Systems (LCMS). These platforms generate a large variety of data at very high speed. This massive data comes from the interactions between the system and the users and between the users themselves (Learners, Tutors, Teachers, administrative Agents). Since 2013, UVS (Virtual University of Senegal), a digital university that offers distance learning through Moodle and Blackboard Collaborate platforms, has emerged. In terms of statistics, it has 29340 students, more than 400 active Tutors and 1000 courses. As a result, a large volume of data is generated on its learning platforms. In this article, we have set up an architecture allowing us to execute all types of queries on all data from platforms (historical data and real-time data) in order to set up intelligent systems capable of improving learning in this university. We then set up a machine learning model as a use case which is based on multiple regression in order to predict the most influential learning objects on the learners' final mark according to his learning activities.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"88 1","pages":"270-275"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, a new form of learning has emerged in higher education. This is e-Learning. Lessons are taught on a Learning Content Management Systems (LCMS). These platforms generate a large variety of data at very high speed. This massive data comes from the interactions between the system and the users and between the users themselves (Learners, Tutors, Teachers, administrative Agents). Since 2013, UVS (Virtual University of Senegal), a digital university that offers distance learning through Moodle and Blackboard Collaborate platforms, has emerged. In terms of statistics, it has 29340 students, more than 400 active Tutors and 1000 courses. As a result, a large volume of data is generated on its learning platforms. In this article, we have set up an architecture allowing us to execute all types of queries on all data from platforms (historical data and real-time data) in order to set up intelligent systems capable of improving learning in this university. We then set up a machine learning model as a use case which is based on multiple regression in order to predict the most influential learning objects on the learners' final mark according to his learning activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Lambda架构的塞内加尔虚拟大学教育数据机器学习模型
如今,高等教育中出现了一种新的学习形式。这就是电子学习。课程是在学习内容管理系统(LCMS)上讲授的。这些平台以非常高的速度生成各种各样的数据。这些海量数据来自系统与用户之间以及用户自身(学习者、导师、教师、管理代理)之间的交互。自2013年以来,通过Moodle和Blackboard协作平台提供远程教育的数字大学UVS(塞内加尔虚拟大学)出现了。据统计,现有在校生29340人,在职导师400余人,课程1000余门。因此,在其学习平台上产生了大量的数据。在本文中,我们建立了一个架构,允许我们对来自平台的所有数据(历史数据和实时数据)执行所有类型的查询,以建立能够改善这所大学学习的智能系统。然后,我们建立了一个基于多元回归的机器学习模型作为用例,以便根据学习者的学习活动预测对学习者最终分数影响最大的学习对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquatic Iguana: A Floating Waste Collecting Robot with IoT Based Water Monitoring System Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm A Wireless ECG Device with Mobile Applications for Android Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1