Study of carbon dioxide adsorption on H-saturated porous graphene sheet and its separation from nitrogen using functional density theory and reactive molecular dynamics

Zahra Negaresh, M. Fazli
{"title":"Study of carbon dioxide adsorption on H-saturated porous graphene sheet and its separation from nitrogen using functional density theory and reactive molecular dynamics","authors":"Zahra Negaresh, M. Fazli","doi":"10.22075/CHEM.2021.24019.1998","DOIUrl":null,"url":null,"abstract":"The adsorption of carbon dioxide molecules on four H-saturated porous graphene sheets with different pore sizes and a poreless graphene sheet was investigated and compared with the adsorption of nitrogen molecules on them. Reactive molecular dynamics was used in this study, which took into account the possibility of chemical bond formation and dissociation as well as the effects of polarity. This research demonstrates that all porous graphene sheets and non-cavity graphene sheets absorb carbon dioxide molecules more than nitrogen molecules and can be used to separate these two gases. However, the size and shape of the cavities have no significant impact on gas molecule adsorption on these plates.","PeriodicalId":7954,"journal":{"name":"Applied Chemistry","volume":"134 1","pages":"23-38"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/CHEM.2021.24019.1998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption of carbon dioxide molecules on four H-saturated porous graphene sheets with different pore sizes and a poreless graphene sheet was investigated and compared with the adsorption of nitrogen molecules on them. Reactive molecular dynamics was used in this study, which took into account the possibility of chemical bond formation and dissociation as well as the effects of polarity. This research demonstrates that all porous graphene sheets and non-cavity graphene sheets absorb carbon dioxide molecules more than nitrogen molecules and can be used to separate these two gases. However, the size and shape of the cavities have no significant impact on gas molecule adsorption on these plates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用功能密度理论和反应分子动力学研究氢饱和多孔石墨烯片对二氧化碳的吸附及其与氮的分离
研究了二氧化碳分子在四种不同孔径的饱和氢多孔石墨烯片和无孔石墨烯片上的吸附,并与氮分子在其上的吸附进行了比较。本研究采用反应分子动力学,考虑了化学键形成和解离的可能性以及极性的影响。该研究表明,所有多孔石墨烯片和非空腔石墨烯片对二氧化碳分子的吸收比氮分子多,可以用来分离这两种气体。然而,空腔的大小和形状对气体分子在这些板上的吸附没有显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One pot three component synthesis of 2-amino-4H-chromene derivatives under microwave irradiation using Sr2As2O7 nanocatalyst Green and three-component synthesis of 2-cyclohexylamino-2-oxo-1-arylethyl/alkyl thiophene-3-carboxylates in aqueous medium Photocatalytic reduction of nitro aromatic compounds to their corresponding amino aromatic compounds by rGO/ZnFe2O4 under visible light irradiation Extraction of Active Ingredients from Shiraz City Bitter Orange Peel with supercritical carbon dioxide and soxhlet Measuring of metanephrine by UV-Vis peak of surface absorption Plasmon resonance of silver nanoparticles by response surface methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1