Optimized Storage and Fast Retrieval of Large Monitoring Datasets without Compromising Granularity

Sebastien Cabaniols, Nathalie Viollet, Clement Poulain
{"title":"Optimized Storage and Fast Retrieval of Large Monitoring Datasets without Compromising Granularity","authors":"Sebastien Cabaniols, Nathalie Viollet, Clement Poulain","doi":"10.1109/ICAC.2015.53","DOIUrl":null,"url":null,"abstract":"The adoption of low power, small footprint systems such as Hewlett Packard Moons hot cartridge servers massively increases the number of servers in cloud/farms implementations. Understanding problems, bottlenecks, and scaling of distributed applications running on such clusters requires the ability to replay the exhaustive data collected by monitoring systems. Current monitoring solutions make compromises, simplify (i.e. Destroy) the data over time or do not scale. Moreover, in the cloud model, server roles and assignments often change, making it mandatory to correlate monitoring data with higher level information such as task assignments known by scheduling software. We present an optimized and fast process to store and retrieve monitoring data, allowing access to all samples collected without any granularity loss and, at the same time, a generic mechanism to correlate with information from orchestrators.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"18 1","pages":"135-136"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adoption of low power, small footprint systems such as Hewlett Packard Moons hot cartridge servers massively increases the number of servers in cloud/farms implementations. Understanding problems, bottlenecks, and scaling of distributed applications running on such clusters requires the ability to replay the exhaustive data collected by monitoring systems. Current monitoring solutions make compromises, simplify (i.e. Destroy) the data over time or do not scale. Moreover, in the cloud model, server roles and assignments often change, making it mandatory to correlate monitoring data with higher level information such as task assignments known by scheduling software. We present an optimized and fast process to store and retrieve monitoring data, allowing access to all samples collected without any granularity loss and, at the same time, a generic mechanism to correlate with information from orchestrators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不影响粒度的大型监测数据集的优化存储和快速检索
采用低功耗、小占用空间的系统,如惠普的热盒式服务器,大大增加了云/场实现中的服务器数量。理解在这样的集群上运行的分布式应用程序的问题、瓶颈和伸缩需要能够重播监视系统收集的详尽数据。当前的监控解决方案做出了妥协,随着时间的推移简化(即销毁)数据,或者无法扩展。此外,在云模型中,服务器角色和分配经常发生变化,因此必须将监视数据与更高级别的信息(如调度软件已知的任务分配)关联起来。我们提供了一个优化的快速过程来存储和检索监控数据,允许访问收集的所有样本而不会丢失任何粒度,同时,提供了一个通用机制来与来自编排器的信息相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Control-Based Approach to Autonomic Performance Management in Computing Systems Trace Analysis for Fault Detection in Application Servers A Programming System for Autonomic Self-Managing Applications A Taxonomy for Self-∗ Properties in Decentralized Autonomic Computing Transparent Autonomization in Composite Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1