A. Sano, Tauhidur Rahman, Mi Zhang, Deepak Ganesan, Tanzeem Choudhury
{"title":"Mobile Sensing of Alertness, Sleep and Circadian Rhythm","authors":"A. Sano, Tauhidur Rahman, Mi Zhang, Deepak Ganesan, Tanzeem Choudhury","doi":"10.1145/3379092.3379100","DOIUrl":null,"url":null,"abstract":"Human biology is deeply rooted in the daily 24-hour temporal period. Our biochemistry varies significantly and idiosyncratically over the course of a day. Staying out of sync with one's circadian rhythm can lead to many complications over time, including a higher likelihood for cardiovascular disease, cancer, obesity, and mental health problems [1]. Constant changes in daily rhythm due to shift work has been shown to increase risk factors for cancer, obesity, and Type 2 diabetes. Moreover, the advent of technology and the resultant always-on ethos can cause rhythm disruption on personal and societal levels for about 70% of the population [2]. Circadian disruption can also cause a serious deficit in cognitive performance. In particular, alertness - a key biological process underlying our cognitive performance - reflects circadian rhythms [3]. Sleep deprivation and circadian disruption can result in poor alertness and reaction time [3]. The decline in cognitive performance after 20 to 25 hours of wakefulness is equivalent to a Blood Alcohol Concentration (BAC) of 0.10% [4]. To compare, in New York State, a BAC of more than 0.05% is considered \"impaired\" and 0.08% is considered \"intoxicated\" [5]. In other words, the effects of sustained sleep deprivation and circadian disruption on cognitive performance is similar (or worse) to being intoxicated.","PeriodicalId":29918,"journal":{"name":"GetMobile-Mobile Computing & Communications Review","volume":"62 1","pages":"16 - 22"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile-Mobile Computing & Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379092.3379100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Human biology is deeply rooted in the daily 24-hour temporal period. Our biochemistry varies significantly and idiosyncratically over the course of a day. Staying out of sync with one's circadian rhythm can lead to many complications over time, including a higher likelihood for cardiovascular disease, cancer, obesity, and mental health problems [1]. Constant changes in daily rhythm due to shift work has been shown to increase risk factors for cancer, obesity, and Type 2 diabetes. Moreover, the advent of technology and the resultant always-on ethos can cause rhythm disruption on personal and societal levels for about 70% of the population [2]. Circadian disruption can also cause a serious deficit in cognitive performance. In particular, alertness - a key biological process underlying our cognitive performance - reflects circadian rhythms [3]. Sleep deprivation and circadian disruption can result in poor alertness and reaction time [3]. The decline in cognitive performance after 20 to 25 hours of wakefulness is equivalent to a Blood Alcohol Concentration (BAC) of 0.10% [4]. To compare, in New York State, a BAC of more than 0.05% is considered "impaired" and 0.08% is considered "intoxicated" [5]. In other words, the effects of sustained sleep deprivation and circadian disruption on cognitive performance is similar (or worse) to being intoxicated.