Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek
{"title":"Geometric Deep Neural Network using Rigid and Non-Rigid Transformations for Human Action Recognition","authors":"Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek","doi":"10.1109/ICCV48922.2021.01238","DOIUrl":null,"url":null,"abstract":"Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"20 1","pages":"12591-12600"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.