n-channel symmetric multiple-description lattice vector quantization

Jan Østergaard, R. Heusdens, J. Jensen
{"title":"n-channel symmetric multiple-description lattice vector quantization","authors":"Jan Østergaard, R. Heusdens, J. Jensen","doi":"10.1109/ISIT.2005.1523654","DOIUrl":null,"url":null,"abstract":"We derive analytical expressions for the central and side quantizers in an n-channel symmetric multiple-description lattice vector quantizer which, under high-resolution assumptions, minimize the expected distortion subject to entropy constraints on the side descriptions for given packet-loss probabilities. The performance of the central quantizer is lattice dependent whereas the performance of the side quantizers is lattice independent. In fact the normalized second moments of the side quantizers are given by that of an L-dimensional sphere. Furthermore, our analytical results reveal a simple way to determine the optimum number of descriptions. We verify theoretical results with numerical experiments and show that with a packet-loss probability of 5%, a gain of 9.1 dB in MSE over state-of-the-art two-description systems can be achieved when quantizing a two-dimensional unit-variance Gaussian source using a total bit budget of 15 bits/dimension and using three descriptions. With 20% packet loss, a similar experiment reveals an MSE reduction of 10.6 dB when using four descriptions.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"1 1","pages":"378-387"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We derive analytical expressions for the central and side quantizers in an n-channel symmetric multiple-description lattice vector quantizer which, under high-resolution assumptions, minimize the expected distortion subject to entropy constraints on the side descriptions for given packet-loss probabilities. The performance of the central quantizer is lattice dependent whereas the performance of the side quantizers is lattice independent. In fact the normalized second moments of the side quantizers are given by that of an L-dimensional sphere. Furthermore, our analytical results reveal a simple way to determine the optimum number of descriptions. We verify theoretical results with numerical experiments and show that with a packet-loss probability of 5%, a gain of 9.1 dB in MSE over state-of-the-art two-description systems can be achieved when quantizing a two-dimensional unit-variance Gaussian source using a total bit budget of 15 bits/dimension and using three descriptions. With 20% packet loss, a similar experiment reveals an MSE reduction of 10.6 dB when using four descriptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
n通道对称多重描述晶格矢量量化
我们推导了n通道对称多重描述晶格矢量量化器中中心和侧量化器的解析表达式,在高分辨率假设下,最小化了给定丢包概率的侧描述受熵约束的预期失真。中心量化器的性能与晶格无关,而侧量化器的性能与晶格无关。事实上,侧量化子的归一化秒矩是由l维球面的秒矩给出的。此外,我们的分析结果揭示了一种确定最佳描述数量的简单方法。我们通过数值实验验证了理论结果,并表明在丢包概率为5%的情况下,当使用15位/维的总比特预算和使用三种描述来量化二维单位方差高斯源时,可以在最先进的双描述系统上获得9.1 dB的MSE增益。在丢包20%的情况下,一个类似的实验显示,当使用四种描述时,MSE降低了10.6 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster Maximal Exact Matches with Lazy LCP Evaluation. Recursive Prefix-Free Parsing for Building Big BWTs. PHONI: Streamed Matching Statistics with Multi-Genome References. Client-Driven Transmission of JPEG2000 Image Sequences Using Motion Compensated Conditional Replenishment GeneComp, a new reference-based compressor for SAM files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1