{"title":"Friction Behaviour of Multilayered Graphene against Steel","authors":"A. Banerji, S. Bhowmick, M. Lukitsch, A. Alpas","doi":"10.1557/OPL.2016.10","DOIUrl":null,"url":null,"abstract":"Frictional behaviour of multilayered graphene was studied in air with different relative humidity (RH) levels (10–52% RH). Pin-on-disk type sliding tests were performed and the running-in and steady state coefficient of friction (COF) values were measured against M2 tool steel counterface. On increasing the RH, multilayered graphene showed a reduction in steady state COF from 0.11 at 10% RH to 0.08 at 52% RH. The low steady state COF values observed in graphene could be attributed to the transfer layer formed on the M2 tool steel counterface. A sliding-induced structural change was observed in graphene transfer layers which could have facilitated the graphitic transfer layer formation. The multilayered graphene showed a lower steady state COF values at all RH compared to non-hydrogenated diamond-like carbon (NH-DLC) which recorded a steady state COF of 0.47 at 10% RH and 0.25 at 52% RH.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/OPL.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Frictional behaviour of multilayered graphene was studied in air with different relative humidity (RH) levels (10–52% RH). Pin-on-disk type sliding tests were performed and the running-in and steady state coefficient of friction (COF) values were measured against M2 tool steel counterface. On increasing the RH, multilayered graphene showed a reduction in steady state COF from 0.11 at 10% RH to 0.08 at 52% RH. The low steady state COF values observed in graphene could be attributed to the transfer layer formed on the M2 tool steel counterface. A sliding-induced structural change was observed in graphene transfer layers which could have facilitated the graphitic transfer layer formation. The multilayered graphene showed a lower steady state COF values at all RH compared to non-hydrogenated diamond-like carbon (NH-DLC) which recorded a steady state COF of 0.47 at 10% RH and 0.25 at 52% RH.