L. Heitman, A. IJzerman, C. McArdle, Adam J Pawson
{"title":"Gonadotrophin-releasing hormone receptors in GtoPdb v.2023.1","authors":"L. Heitman, A. IJzerman, C. McArdle, Adam J Pawson","doi":"10.2218/gtopdb/f31/2023.1","DOIUrl":null,"url":null,"abstract":"GnRH1 and GnRH2 receptors (provisonal nomenclature [39], also called Type I and Type II GnRH receptor, respectively [85]) have been cloned from numerous species, most of which express two or three types of GnRH receptor [85, 84, 114]. GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is a hypothalamic decapeptide also known as luteinizing hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species [85, 84, 114] including GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2 (which is also known as chicken GnRH-II). Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals [85, 84, 114]. GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone-dependent conditions [58]. Notably, agonists cause desensitization of GnRH-stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone-dependent cancers of the breast, ovary and prostate [58]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH-terminal tails found in other GPCRs. GnRH2 receptors do have COOH-terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [88]. Phylogenetic classifications divide GnRH receptors into three [85] or five groups [130] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene. The structure of the GnRH1 receptor in complex with elagolix has been elucidated [133].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUPHAR/BPS Guide to Pharmacology CITE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/gtopdb/f31/2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
GnRH1 and GnRH2 receptors (provisonal nomenclature [39], also called Type I and Type II GnRH receptor, respectively [85]) have been cloned from numerous species, most of which express two or three types of GnRH receptor [85, 84, 114]. GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is a hypothalamic decapeptide also known as luteinizing hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin or simply as GnRH. It is a member of a family of similar peptides found in many species [85, 84, 114] including GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2 (which is also known as chicken GnRH-II). Receptors for three forms of GnRH exist in some species but only GnRH I and GnRH II and their cognate receptors have been found in mammals [85, 84, 114]. GnRH1 receptors are expressed by pituitary gonadotrophs, where they mediate the effects of GnRH on gonadotropin hormone synthesis and secretion that underpin central control of mammalian reproduction. GnRH analogues are used in assisted reproduction and to treat steroid hormone-dependent conditions [58]. Notably, agonists cause desensitization of GnRH-stimulated gonadotropin secretion and the consequent reduction in circulating sex steroids is exploited to treat hormone-dependent cancers of the breast, ovary and prostate [58]. GnRH1 receptors are selectively activated by GnRH I and all lack the COOH-terminal tails found in other GPCRs. GnRH2 receptors do have COOH-terminal tails and (where tested) are selective for GnRH II over GnRH I. GnRH2 receptors are expressed by some primates but not by humans [88]. Phylogenetic classifications divide GnRH receptors into three [85] or five groups [130] and highlight examples of gene loss through evolution, with humans retaining only one ancient gene. The structure of the GnRH1 receptor in complex with elagolix has been elucidated [133].
GnRH1和GnRH2受体(暂定命名法[39],也分别称为I型和II型GnRH受体[85])已经从许多物种中克隆出来,其中大多数表达两种或三种GnRH受体[85,84,114]。GnRH I (p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2)是一种下丘脑十肽,也被称为促黄体激素释放激素、促性腺激素、促性腺激素、促性腺激素或简称GnRH。它是许多物种中发现的类似肽家族的成员[85,84,114],包括GnRH II (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2(也称为鸡GnRH-II)。在一些物种中存在三种形式的GnRH受体,但在哺乳动物中只发现了GnRH I和GnRH II及其同源受体[85,84,114]。GnRH1受体由垂体促性腺激素表达,介导GnRH对促性腺激素的合成和分泌的影响,而促性腺激素是哺乳动物生殖的中枢控制。GnRH类似物用于辅助生殖和治疗类固醇激素依赖性疾病[58]。值得注意的是,激动剂会导致gnrh刺激的促性腺激素分泌脱敏,因此循环性类固醇的减少被用于治疗激素依赖性的乳腺癌、卵巢癌和前列腺癌[58]。GnRH1受体被GnRH I选择性激活,并且都缺乏其他gpcr中发现的cooh末端尾部。GnRH2受体确实具有cooh末端尾巴,并且(在测试中)对GnRH II而不是GnRH i具有选择性。GnRH2受体在一些灵长类动物中表达,但在人类中不表达[88]。系统发育分类将GnRH受体分为三组[85]或五组[130],并强调了基因在进化中丢失的例子,人类只保留了一个古老的基因。GnRH1受体与elagolix复合物的结构已被阐明[133]。