Pub Date : 2023-08-07DOI: 10.2218/gtopdb/f1023/2023.2
Elena Faccenda, Robert Layfield
Ubiquitination (a.k.a. ubiquitylation) is a protein post-translational modification that typically requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases) [30]. Ubiquitination of proteins can target them for proteasomal degradation, or modulate cellular processes including cell cycle progression, transcriptional regulation, DNA repair and signal transduction. E3 ubiquitin ligases, of which there are >600 in humans, are a family of highly heterogeneous proteins and protein complexes that recruit ubiquitin-loaded E2 enzymes to mediate transfer of the ubiquitin molecule from the E2 to protein substrates. Target substrate specificity is determined by a substrate recognition subunit within the E3 complex. E3 ligases are being exploited as pharmacological targets to facilitate targeted protein degradation (TPD), as an alternative to small molecule inhibitors [3], through the development of proteolysis targeting chimeras (PROTACs) and molecular glues.
{"title":"E3 ubiquitin ligase components in GtoPdb v.2023.2","authors":"Elena Faccenda, Robert Layfield","doi":"10.2218/gtopdb/f1023/2023.2","DOIUrl":"https://doi.org/10.2218/gtopdb/f1023/2023.2","url":null,"abstract":"Ubiquitination (a.k.a. ubiquitylation) is a protein post-translational modification that typically requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases) [30]. Ubiquitination of proteins can target them for proteasomal degradation, or modulate cellular processes including cell cycle progression, transcriptional regulation, DNA repair and signal transduction. E3 ubiquitin ligases, of which there are >600 in humans, are a family of highly heterogeneous proteins and protein complexes that recruit ubiquitin-loaded E2 enzymes to mediate transfer of the ubiquitin molecule from the E2 to protein substrates. Target substrate specificity is determined by a substrate recognition subunit within the E3 complex. E3 ligases are being exploited as pharmacological targets to facilitate targeted protein degradation (TPD), as an alternative to small molecule inhibitors [3], through the development of proteolysis targeting chimeras (PROTACs) and molecular glues.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135999919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.2218/gtopdb/f78/2023.2
Nathaniel T. Blair, Ana I. Caceres, Ingrid Carvacho, Dipayan Chaudhuri, David E. Clapham, Katrien De Clerq, Markus Delling, Julia F. Doerner, Lu Fan, Christian M. Grimm, Kotdaji Ha, Meiqin Hu, Sairam V. Jabba, Sven E. Jordt, David Julius, Kristopher T Kahle, Boyi Liu, Qiang Liu, David McKemy, Bernd Nilius, Elena Oancea, Grzegorz Owsianik, Antonio Riccio, Rajan Sah, Stephanie C. Stotz, Jinbin Tian, Dan Tong, Joris Vriens, Long-Jun Wu, Haoxing Xu, Fan Yang, Wei Yang, Lixia Yue, Michael X. Zhu
The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [176, 1072]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [730]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [401, 686, 1155, 256]. The established, or potential, involvement of TRP channels in disease [1126] is reviewed in [448, 685], [688] and [464], together with a special edition of Biochemica et Biophysica Acta on the subject [685]. Additional disease related reviews, for pain [633], stroke [1135], sensation and inflammation [988], itch [130], and airway disease [310, 1051], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [805]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [1009, 689, 801]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [293]). TRPA1 activation of sensory neurons contribute to nociception [414, 890, 602]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [575, 60, 365, 577]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [26, 60]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activ
{"title":"Transient Receptor Potential channels (TRP) in GtoPdb v.2023.2","authors":"Nathaniel T. Blair, Ana I. Caceres, Ingrid Carvacho, Dipayan Chaudhuri, David E. Clapham, Katrien De Clerq, Markus Delling, Julia F. Doerner, Lu Fan, Christian M. Grimm, Kotdaji Ha, Meiqin Hu, Sairam V. Jabba, Sven E. Jordt, David Julius, Kristopher T Kahle, Boyi Liu, Qiang Liu, David McKemy, Bernd Nilius, Elena Oancea, Grzegorz Owsianik, Antonio Riccio, Rajan Sah, Stephanie C. Stotz, Jinbin Tian, Dan Tong, Joris Vriens, Long-Jun Wu, Haoxing Xu, Fan Yang, Wei Yang, Lixia Yue, Michael X. Zhu","doi":"10.2218/gtopdb/f78/2023.2","DOIUrl":"https://doi.org/10.2218/gtopdb/f78/2023.2","url":null,"abstract":"The TRP superfamily of channels (nomenclature as agreed by NC-IUPHAR [176, 1072]), whose founder member is the Drosophila Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPML based on amino acid homologies. TRP subunits contain six putative TM domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [730]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [401, 686, 1155, 256]. The established, or potential, involvement of TRP channels in disease [1126] is reviewed in [448, 685], [688] and [464], together with a special edition of Biochemica et Biophysica Acta on the subject [685]. Additional disease related reviews, for pain [633], stroke [1135], sensation and inflammation [988], itch [130], and airway disease [310, 1051], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRPC1/C4/C5 channels [805]. Most TRP channels are regulated by phosphoinostides such as PtIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [1009, 689, 801]). Such regulation is generally not included in the tables.When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel's function is to act as a 'hot' or 'cold' sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response. TRPA (ankyrin) familyTRPA1 is the sole mammalian member of this group (reviewed by [293]). TRPA1 activation of sensory neurons contribute to nociception [414, 890, 602]. Pungent chemicals such as mustard oil (AITC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [575, 60, 365, 577]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [26, 60]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activ","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135999921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f228/2023.1
M. Hershfinkel
Along with the SLC30 family, SLC39 family members regulate zinc movement in cells. SLC39 metal ion transporters accumulate zinc into the cytosol. Membrane topology modelling suggests the presence of eight TM regions with both termini extracellular or in the lumen of intracellular organelles. The mechanism for zinc transport for many members is unknown but appears to involve co-transport of bicarbonate ions [3, 4].
{"title":"SLC39 family of metal ion transporters in GtoPdb v.2023.1","authors":"M. Hershfinkel","doi":"10.2218/gtopdb/f228/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f228/2023.1","url":null,"abstract":"Along with the SLC30 family, SLC39 family members regulate zinc movement in cells. SLC39 metal ion transporters accumulate zinc into the cytosol. Membrane topology modelling suggests the presence of eight TM regions with both termini extracellular or in the lumen of intracellular organelles. The mechanism for zinc transport for many members is unknown but appears to involve co-transport of bicarbonate ions [3, 4].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"103 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85855694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f48/2023.1
S. Colletti, A. IJzerman, T. Lovenberg, S. Offermanns, G. Semple, M. G. Waters, A. Wise
The hydroxycarboxylic acid family of receptors (ENSFM00500000271913, nomenclature as agreed by the NC-IUPHAR Subcommittee on Hydroxycarboxylic acid receptors [36, 12]) respond to organic acids, including the endogenous hydroxy carboxylic acids 3-hydroxy butyric acid and L-lactic acid, as well as the lipid lowering agents nicotinic acid (niacin), acipimox and acifran [53, 60, 65]. These receptors were provisionally described as nicotinic acid receptors, although nicotinic acid shows submicromolar potency at HCA2 receptors only and is unlikely to be the natural ligand [60, 65].
{"title":"Hydroxycarboxylic acid receptors in GtoPdb v.2023.1","authors":"S. Colletti, A. IJzerman, T. Lovenberg, S. Offermanns, G. Semple, M. G. Waters, A. Wise","doi":"10.2218/gtopdb/f48/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f48/2023.1","url":null,"abstract":"The hydroxycarboxylic acid family of receptors (ENSFM00500000271913, nomenclature as agreed by the NC-IUPHAR Subcommittee on Hydroxycarboxylic acid receptors [36, 12]) respond to organic acids, including the endogenous hydroxy carboxylic acids 3-hydroxy butyric acid and L-lactic acid, as well as the lipid lowering agents nicotinic acid (niacin), acipimox and acifran [53, 60, 65]. These receptors were provisionally described as nicotinic acid receptors, although nicotinic acid shows submicromolar potency at HCA2 receptors only and is unlikely to be the natural ligand [60, 65].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77082293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f14/2023.1
F. Bachelerie, A. Ben-Baruch, A. Burkhardt, I. Charo, C. Combadière, R. Förster, J. Farber, G. Graham, R. Hills, R. Horuk, M. Locati, A. Luster, A. Mantovani, K. Matsushima, A. Monaghan, G. Moschovakis, P. Murphy, R. Nibbs, H. Nomiyama, Joost J. Oppenheim, C. Power, Amanda E. I. Proudfoot , M. Rosenkilde, A. Rot, S. Sozzani, A. H. Sparre-Ulrich, M. Thelen, Mohib Uddin, O. Yoshie, A. Zlotnik
Chemokine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Chemokine Receptors [438, 437, 32]) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non-hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibacterials, among others. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and "Atypical chemokine receptors", which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [32].Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as β-chemokines; n= 28), CXC (also known as α-chemokines; n= 17) and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [33]. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names [693] and aliases.
{"title":"Chemokine receptors in GtoPdb v.2023.1","authors":"F. Bachelerie, A. Ben-Baruch, A. Burkhardt, I. Charo, C. Combadière, R. Förster, J. Farber, G. Graham, R. Hills, R. Horuk, M. Locati, A. Luster, A. Mantovani, K. Matsushima, A. Monaghan, G. Moschovakis, P. Murphy, R. Nibbs, H. Nomiyama, Joost J. Oppenheim, C. Power, Amanda E. I. Proudfoot , M. Rosenkilde, A. Rot, S. Sozzani, A. H. Sparre-Ulrich, M. Thelen, Mohib Uddin, O. Yoshie, A. Zlotnik","doi":"10.2218/gtopdb/f14/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f14/2023.1","url":null,"abstract":"Chemokine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Chemokine Receptors [438, 437, 32]) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non-hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibacterials, among others. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and \"Atypical chemokine receptors\", which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [32].Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as β-chemokines; n= 28), CXC (also known as α-chemokines; n= 17) and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [33]. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names [693] and aliases.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82673190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f673/2023.1
Mohib Uddin
PI3K activation is one of the most important signal transduction pathways used to transmit signals from cell-surface receptors to regulate intracellular processes (cell growth, survival, proliferation and movement). PI3K catalytic (and regulatory) subunits play vital roles in normal cell function and in disease. Progress made in developing PI3K-targeted agents as potential therapeutics for treating cancer and other diseases is reviewed by Fruman et al. (2017) [41].
{"title":"Phosphatidylinositol-4,5-bisphosphate 3-kinase family in GtoPdb v.2023.1","authors":"Mohib Uddin","doi":"10.2218/gtopdb/f673/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f673/2023.1","url":null,"abstract":"PI3K activation is one of the most important signal transduction pathways used to transmit signals from cell-surface receptors to regulate intracellular processes (cell growth, survival, proliferation and movement). PI3K catalytic (and regulatory) subunits play vital roles in normal cell function and in disease. Progress made in developing PI3K-targeted agents as potential therapeutics for treating cancer and other diseases is reviewed by Fruman et al. (2017) [41].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91201692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f51/2023.1
Gary Aston-Jones, Pascal Bonaventure, Paul Coleman, Luis De Lecea, Debbie Hartman, Daniel Hoyer, Laura Jacobson, Thomas Kilduff, Jyrki P. Kukkonen, Terrence P. McDonald, Rod Porter, John Renger, Takeshi Sakurai, Jerome M Siegel, Gregor Sutcliffe, Neil Upton, Christopher J. Winrow, Masashi Yanagisawa
Orexin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Orexin receptors [43]) are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [117]. Orexin signaling has been associated with regulation of sleep and wakefulness, reward and addiction, appetite and feeding, pain gating, stress response, anxiety and depression. Currently the orexin receptor ligands in clinical use are the dual orexin receptor antagonists suvorexant and lemborexant and daridorexant, which are used as hypnotics, and several dual and OX2-selective antagonists are under development. Multiple orexin agonists are in development for the treatment of narcolepsy and other sleep disorders. Orexin receptor 3D structures have been solved [146, 144, 55, 126, 47, 109, 7, 145].
{"title":"Orexin receptors in GtoPdb v.2023.1","authors":"Gary Aston-Jones, Pascal Bonaventure, Paul Coleman, Luis De Lecea, Debbie Hartman, Daniel Hoyer, Laura Jacobson, Thomas Kilduff, Jyrki P. Kukkonen, Terrence P. McDonald, Rod Porter, John Renger, Takeshi Sakurai, Jerome M Siegel, Gregor Sutcliffe, Neil Upton, Christopher J. Winrow, Masashi Yanagisawa","doi":"10.2218/gtopdb/f51/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f51/2023.1","url":null,"abstract":"Orexin receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Orexin receptors [43]) are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [117]. Orexin signaling has been associated with regulation of sleep and wakefulness, reward and addiction, appetite and feeding, pain gating, stress response, anxiety and depression. Currently the orexin receptor ligands in clinical use are the dual orexin receptor antagonists suvorexant and lemborexant and daridorexant, which are used as hypnotics, and several dual and OX2-selective antagonists are under development. Multiple orexin agonists are in development for the treatment of narcolepsy and other sleep disorders. Orexin receptor 3D structures have been solved [146, 144, 55, 126, 47, 109, 7, 145].","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"09 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135016697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f781/2023.1
Mohib Uddin
Phosphatidylinositol may be phosphorylated at either 3- or 4- positions on the inositol ring by PI 3-kinases or PI 4-kinases, respectively.Phosphatidylinositol 3-kinasesPhosphatidylinositol 3-kinases (PI3K, provisional nomenclature) catalyse the introduction of a phosphate into the 3-position of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol 4,5-bisphosphate (PIP2). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including ATM (Q13315) and mTOR (P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3K-related kinases. Structurally, PI3Ks have common motifs of at least one C2, calcium-binding domain and helical domains, alongside structurally-conserved catalytic domains. wortmannin and LY 294002 are widely-used inhibitors of PI3K activities. wortmannin is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.Class I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5-bisphosphate to generate phosphatidylinositol 3,4,5-trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110α, p110β and p110δ catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110γ. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linked more with GPCR signalling.Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3-phosphate (and possibly phosphatidylinositol 4-phosphate to generate phosphatidylinositol 3,4-bisphosphate). Three monomeric members exist, PI3K-C2α, β and β, and include Ras-binding, Phox homology and two C2 domains.The only class III PI3K isoform (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).Phosphatidylinositol 4-kinasesPhosphatidylinositol 4-kinases (EC 2.7.1.67) generate phosphatidylinositol 4-phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.
{"title":"Phosphatidylinositol kinases in GtoPdb v.2023.1","authors":"Mohib Uddin","doi":"10.2218/gtopdb/f781/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f781/2023.1","url":null,"abstract":"Phosphatidylinositol may be phosphorylated at either 3- or 4- positions on the inositol ring by PI 3-kinases or PI 4-kinases, respectively.Phosphatidylinositol 3-kinasesPhosphatidylinositol 3-kinases (PI3K, provisional nomenclature) catalyse the introduction of a phosphate into the 3-position of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol 4,5-bisphosphate (PIP2). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including ATM (Q13315) and mTOR (P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3K-related kinases. Structurally, PI3Ks have common motifs of at least one C2, calcium-binding domain and helical domains, alongside structurally-conserved catalytic domains. wortmannin and LY 294002 are widely-used inhibitors of PI3K activities. wortmannin is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.Class I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5-bisphosphate to generate phosphatidylinositol 3,4,5-trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110α, p110β and p110δ catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110γ. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linked more with GPCR signalling.Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3-phosphate (and possibly phosphatidylinositol 4-phosphate to generate phosphatidylinositol 3,4-bisphosphate). Three monomeric members exist, PI3K-C2α, β and β, and include Ras-binding, Phox homology and two C2 domains.The only class III PI3K isoform (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).Phosphatidylinositol 4-kinasesPhosphatidylinositol 4-kinases (EC 2.7.1.67) generate phosphatidylinositol 4-phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135016700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.2218/gtopdb/f41/2023.1
Anthony P. Davenport, Takio Kitazawa, Gareth Sanger
Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. There are significant species differences in the structure of motilin and its receptor, and in the functions of motilin. In humans and large mammals such as dog, activation of these receptors by motilin released from endocrine cells in the duodenal mucosa during fasting, induces propulsive phase III movements. This activity is associated with promoting hunger in humans. In humans and other mammals drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote upper gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibacterials (often called motilides; e.g. erythromycin, azithromycin), although for many of these molecules the evidence is sparse. Relatively high doses may induce vomiting and in humans, nausea.
{"title":"Motilin receptor in GtoPdb v.2023.1","authors":"Anthony P. Davenport, Takio Kitazawa, Gareth Sanger","doi":"10.2218/gtopdb/f41/2023.1","DOIUrl":"https://doi.org/10.2218/gtopdb/f41/2023.1","url":null,"abstract":"Motilin receptors (provisional nomenclature) are activated by motilin, a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide. There are significant species differences in the structure of motilin and its receptor, and in the functions of motilin. In humans and large mammals such as dog, activation of these receptors by motilin released from endocrine cells in the duodenal mucosa during fasting, induces propulsive phase III movements. This activity is associated with promoting hunger in humans. In humans and other mammals drugs and other non-peptide compounds which activate the motilin receptor may generate a more long-lasting ability to increase cholinergic activity within the upper gut, to promote upper gastrointestinal motility; this activity is suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibacterials (often called motilides; e.g. erythromycin, azithromycin), although for many of these molecules the evidence is sparse. Relatively high doses may induce vomiting and in humans, nausea.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"36 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135016928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}