Maximum Privacy under Perfect Utility in Sensor Networks

C. Wang, Wee Peng Tay, Yang Song
{"title":"Maximum Privacy under Perfect Utility in Sensor Networks","authors":"C. Wang, Wee Peng Tay, Yang Song","doi":"10.1109/SAM48682.2020.9104271","DOIUrl":null,"url":null,"abstract":"Each node or sensor in a network makes a local observation that is linearly related to a set of public and private parameters. The nodes send their observations to a fusion center to allow it to estimate a set of public parameters. However, the fusion center may also abuse this information to estimate other private parameters. To prevent leakage of the private parameters, each node first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We consider the maximum privacy achievable under perfect utility in terms of the Cramer-Rao lower bounds. We propose a method to maximize the estimation error for inferring the private parameters while ensuring the estimation error for inferring the public parameters remains unchanged after sanitizing the sensors’ measurements.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"77 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Each node or sensor in a network makes a local observation that is linearly related to a set of public and private parameters. The nodes send their observations to a fusion center to allow it to estimate a set of public parameters. However, the fusion center may also abuse this information to estimate other private parameters. To prevent leakage of the private parameters, each node first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We consider the maximum privacy achievable under perfect utility in terms of the Cramer-Rao lower bounds. We propose a method to maximize the estimation error for inferring the private parameters while ensuring the estimation error for inferring the public parameters remains unchanged after sanitizing the sensors’ measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络完美效用下的最大隐私
网络中的每个节点或传感器进行与一组公共和私有参数线性相关的本地观察。这些节点将它们的观测结果发送到融合中心,使其能够估计一组公共参数。然而,融合中心也可能滥用这些信息来估计其他私有参数。为了防止私有参数的泄漏,每个节点在将其传输到融合中心之前,首先使用本地隐私机制对其本地观察进行消毒。我们从Cramer-Rao下界的角度考虑了在完美效用下可实现的最大隐私。我们提出了一种方法,在对传感器的测量数据进行消毒后,使私有参数的估计误差最大化,同时保证公共参数的估计误差保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1