On the Performance of Machine Learning Based Flight Delay Prediction – Investigating the Impact of Short-Term Features

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2022-12-02 DOI:10.7307/ptt.v34i6.4132
Delia Schösser, Jörn Schönberger
{"title":"On the Performance of Machine Learning Based Flight Delay Prediction – Investigating the Impact of Short-Term Features","authors":"Delia Schösser, Jörn Schönberger","doi":"10.7307/ptt.v34i6.4132","DOIUrl":null,"url":null,"abstract":"People and companies today are connected around the world, which has led to a growing importance of the aviation industry. As flight delays are a big challenge in aviation, machine learning algorithms can be used to forecast those. This paper investigates the prediction of the occurrence of flight arrival delays with three prominent machine learning algorithms for a data set of domestic flights in the USA. The task is regarded as a classification problem. The focus lies on the investigation of the influence of short-term features on the quality of the results. Therefore, three scenarios are created that are characterised by different input feature sets. When forgoing the inclusion of short-term information in order to shift the prediction timing to an early point in time, an accuracy of 69.5% with a recall of 68.2% is achieved. By including information on the delay that the aircraft had on its previous flight, the prediction quality increases slightly. Hence, this is a compromise between the early prediction timing of the first model and the good prediction quality of the third model, where the departure delay of the aircraft is added as an input feature. In this case, an accuracy of 89.9% with a recall of 83.4% is obtained. The desired timing of prediction therefore determines which features to use as inputs since short-term features significantly improve the prediction quality.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v34i6.4132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

People and companies today are connected around the world, which has led to a growing importance of the aviation industry. As flight delays are a big challenge in aviation, machine learning algorithms can be used to forecast those. This paper investigates the prediction of the occurrence of flight arrival delays with three prominent machine learning algorithms for a data set of domestic flights in the USA. The task is regarded as a classification problem. The focus lies on the investigation of the influence of short-term features on the quality of the results. Therefore, three scenarios are created that are characterised by different input feature sets. When forgoing the inclusion of short-term information in order to shift the prediction timing to an early point in time, an accuracy of 69.5% with a recall of 68.2% is achieved. By including information on the delay that the aircraft had on its previous flight, the prediction quality increases slightly. Hence, this is a compromise between the early prediction timing of the first model and the good prediction quality of the third model, where the departure delay of the aircraft is added as an input feature. In this case, an accuracy of 89.9% with a recall of 83.4% is obtained. The desired timing of prediction therefore determines which features to use as inputs since short-term features significantly improve the prediction quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的航班延误预测性能研究——短期特征的影响
今天,人们和公司在世界各地联系在一起,这使得航空业变得越来越重要。由于航班延误是航空业的一大挑战,机器学习算法可以用来预测航班延误。本文针对美国国内航班的数据集,研究了三种著名的机器学习算法对航班到达延误的预测。该任务被视为一个分类问题。重点是研究短期特征对结果质量的影响。因此,创建了三个场景,它们具有不同的输入特征集。当为了将预测时间转移到较早的时间点而放弃短期信息时,准确率为69.5%,召回率为68.2%。通过包含飞机在前一次飞行中的延误信息,预测质量略有提高。因此,这是第一个模型的早期预测时机和第三个模型的良好预测质量之间的折衷,其中飞机的起飞延迟作为输入特征添加。在这种情况下,准确率为89.9%,召回率为83.4%。因此,预期的预测时间决定了使用哪些特征作为输入,因为短期特征显著地提高了预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1