{"title":"Fault detection of a five-phase permanent magnet synchronous reluctance motor based on symmetrical components theory","authors":"A. Arafat, Seungdeog Choi","doi":"10.1109/IEMDC.2015.7409246","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for phase fault detection of a five-phase permanent magnet synchronous reluctance motor (PMa-SynRM). The proposed fault detection method has been developed through novel decomposition technique of sequential components of a five-phase electrical machine. Unlike conventional three phase machines, phase fault of five-phase machine shows different response under single phase fault, two adjacent phase fault, and two non-adjacent phase fault. A newly developed symmetrical component analysis is applied to identify those phase fault condition in five phase machines. The analysis has been further extended to detect the types of faults based on magnitude pattern of the fundamental frequencies of the symmetrical components in frequency domain. In this paper, open-phase fault detection analysis has been carried out through extensive simulation and experimental tests to validate the proposed method. A 5Kw dynamo system controlled by TI-DSP F28335 has been used.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"21 1","pages":"1405-1411"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a new approach for phase fault detection of a five-phase permanent magnet synchronous reluctance motor (PMa-SynRM). The proposed fault detection method has been developed through novel decomposition technique of sequential components of a five-phase electrical machine. Unlike conventional three phase machines, phase fault of five-phase machine shows different response under single phase fault, two adjacent phase fault, and two non-adjacent phase fault. A newly developed symmetrical component analysis is applied to identify those phase fault condition in five phase machines. The analysis has been further extended to detect the types of faults based on magnitude pattern of the fundamental frequencies of the symmetrical components in frequency domain. In this paper, open-phase fault detection analysis has been carried out through extensive simulation and experimental tests to validate the proposed method. A 5Kw dynamo system controlled by TI-DSP F28335 has been used.