{"title":"The where in the tweet","authors":"Wen Li, P. Serdyukov, A. D. Vries, Carsten Eickhoff, M. Larson","doi":"10.1145/2063576.2063995","DOIUrl":null,"url":null,"abstract":"Twitter is a widely-used social networking service which enables its users to post text-based messages, so-called tweets. POI tags on tweets can show more human-readable high-level information about a place rather than just a pair of coordinates. In this paper, we attempt to predict the POI tag of a tweet based on its textual content and time of posting. Potential applications include accurate positioning when GPS devices fail and disambiguating places located near each other. We consider this task as a ranking problem, i.e., we try to rank a set of candidate POIs according to a tweet by using language and time models. To tackle the sparsity of tweets tagged with POIs, we use web pages retrieved by search engines as an additional source of evidence. From our experiments, we find that users indeed leak some information about their accurate locations in their tweets.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"64 1","pages":"2473-2476"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

Twitter is a widely-used social networking service which enables its users to post text-based messages, so-called tweets. POI tags on tweets can show more human-readable high-level information about a place rather than just a pair of coordinates. In this paper, we attempt to predict the POI tag of a tweet based on its textual content and time of posting. Potential applications include accurate positioning when GPS devices fail and disambiguating places located near each other. We consider this task as a ranking problem, i.e., we try to rank a set of candidate POIs according to a tweet by using language and time models. To tackle the sparsity of tweets tagged with POIs, we use web pages retrieved by search engines as an additional source of evidence. From our experiments, we find that users indeed leak some information about their accurate locations in their tweets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推文中的where
Twitter是一种被广泛使用的社交网络服务,它允许用户发布基于文本的信息,即所谓的tweet。tweet上的POI标签可以显示更多人类可读的关于一个地方的高级信息,而不仅仅是一对坐标。在本文中,我们尝试根据tweet的文本内容和发布时间来预测其POI标签。潜在的应用包括GPS设备故障时的精确定位,以及消除彼此附近位置的歧义。我们将此任务视为一个排序问题,即我们尝试使用语言和时间模型根据tweet对一组候选poi进行排序。为了解决带有poi标记的推文的稀疏性,我们使用搜索引擎检索的网页作为额外的证据来源。从我们的实验中,我们发现用户确实在他们的推文中泄露了一些关于他们准确位置的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backdoor in Seconds: Unlocking Vulnerabilities in Large Pre-trained Models via Model Editing. MUSE: A Multi-slice Joint Analysis Method for Spatial Transcriptomics Experiments. scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. HypMix: Hyperbolic Representation Learning for Graphs with Mixed Hierarchical and Non-hierarchical Structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1