Phillip Taylor, N. Griffiths, A. Bhalerao, Zhou Xu, A. Gelencser, T. Popham
{"title":"Investigating the Feasibility of Vehicle Telemetry Data as a Means of Predicting Driver Workload","authors":"Phillip Taylor, N. Griffiths, A. Bhalerao, Zhou Xu, A. Gelencser, T. Popham","doi":"10.4018/ijmhci.2017070104","DOIUrl":null,"url":null,"abstract":"Driving is a safety critical task that requires a high level of attention and workload from the driver. Despite this, people often also perform secondary tasks such as eating or using a mobile phone, which increase workload levels and divert cognitive and physical attention from the primary task of driving. If a vehicle is aware that the driver is currently under high workload, the vehicle functionality can be changed in order to minimize any further demand. Traditionally, workload measurements have been performed using intrusive means such as physiological sensors. Another approach may be to use vehicle telemetry data as a performance measure for workload. In this paper, we present the Warwick-JLR Driver Monitoring Dataset (DMD) and analyse it to investigate the feasibility of using vehicle telemetry data for determining the driver workload. We perform a statistical analysis of subjective ratings, physiological data, and vehicle telemetry data collected during a track study. A data mining methodology is then presented to build predictive models using this data, for the driver workload monitoring problem.","PeriodicalId":43100,"journal":{"name":"International Journal of Mobile Human Computer Interaction","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Human Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmhci.2017070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 2
Abstract
Driving is a safety critical task that requires a high level of attention and workload from the driver. Despite this, people often also perform secondary tasks such as eating or using a mobile phone, which increase workload levels and divert cognitive and physical attention from the primary task of driving. If a vehicle is aware that the driver is currently under high workload, the vehicle functionality can be changed in order to minimize any further demand. Traditionally, workload measurements have been performed using intrusive means such as physiological sensors. Another approach may be to use vehicle telemetry data as a performance measure for workload. In this paper, we present the Warwick-JLR Driver Monitoring Dataset (DMD) and analyse it to investigate the feasibility of using vehicle telemetry data for determining the driver workload. We perform a statistical analysis of subjective ratings, physiological data, and vehicle telemetry data collected during a track study. A data mining methodology is then presented to build predictive models using this data, for the driver workload monitoring problem.