{"title":"A New Emulation Platform for Real-time Machine Learning in Substance Use Data Streams","authors":"Stefan A. Bruendl, Hua Fang, H. Ngo, E. Boyer, Honggang Wang","doi":"10.1109/IRI49571.2020.00054","DOIUrl":null,"url":null,"abstract":"With 5G networks on the rise, it becomes more and more important to grant researchers access to tools that allow for development and experimentation in the field of 5G transmission. Healthcare can benefit greatly from these developments. In this paper a real-time transmission technique is described and tested that, if implemented, allows wearable devices to transmit multiple streams of data on various frequencies. These tests will be used to explain how this presented platform works, what drawbacks and benefits exist with the proposed scheme, and how to further develop the solution of real-time transmission of sensitive data, such as substance-use data, at higher frequencies.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With 5G networks on the rise, it becomes more and more important to grant researchers access to tools that allow for development and experimentation in the field of 5G transmission. Healthcare can benefit greatly from these developments. In this paper a real-time transmission technique is described and tested that, if implemented, allows wearable devices to transmit multiple streams of data on various frequencies. These tests will be used to explain how this presented platform works, what drawbacks and benefits exist with the proposed scheme, and how to further develop the solution of real-time transmission of sensitive data, such as substance-use data, at higher frequencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的物质使用数据流实时机器学习仿真平台
随着5G网络的兴起,为研究人员提供能够在5G传输领域进行开发和实验的工具变得越来越重要。医疗保健可以从这些发展中受益匪浅。本文描述并测试了一种实时传输技术,如果实现,可穿戴设备可以在不同频率上传输多个数据流。这些测试将用于解释所提出的平台如何工作,拟议方案存在哪些缺点和优点,以及如何进一步开发以更高频率实时传输敏感数据(如物质使用数据)的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1