{"title":"APPLICATION OF CFD FOR CALCULATION AND SIMULATION OF ANCHOR-CABLE TENSIONS IN MOORING SHIP","authors":"Nguyen Dang Khoa Pham, X. Nguyen","doi":"10.26480/jmerd.05.2019.182.186","DOIUrl":null,"url":null,"abstract":"Computational Fluid Dynamics was applied to early hydrodynamics research, and the name CFD originated here. CFD has been developed, applied, and highly effective in the fields of fluid mechanics and deformation and elastic environments. CFDs are widely applied in advanced sciences and high technology as well as maritime sciences. In recent years, many scientists have effectively exploited and applied CFD and numerical methods for calculating and simulating the hydrodynamics of ocean current on ships. Simulating studies on the effect of ocean current on the tension of anchor-cable by CFD are becoming more and more popular. In this paper, from the theoretical basis related to the tension problem of mooring cables, the authors have proposed a simulation model that applies CFD to research and develop simulation model and calculate tension of cables in mooring ship. The goal of this study is to build a simulation model that is closest to reality so that we can study assumptions of different situations. Also, the achieved results will be the basis for proposing warnings to minimize marine accidents at the mooring area at the ports in Vung Tau, especially for tanker fleets. The authors have developed general implementation procedures, and specific calculations for several different input cases on a ship hull based on data of wind and flow characteristics at Vung Tau anchorage area, namely the oil tanker M/T AULAC JUPITER of Au Lac Joint Stock Company.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/jmerd.05.2019.182.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
Computational Fluid Dynamics was applied to early hydrodynamics research, and the name CFD originated here. CFD has been developed, applied, and highly effective in the fields of fluid mechanics and deformation and elastic environments. CFDs are widely applied in advanced sciences and high technology as well as maritime sciences. In recent years, many scientists have effectively exploited and applied CFD and numerical methods for calculating and simulating the hydrodynamics of ocean current on ships. Simulating studies on the effect of ocean current on the tension of anchor-cable by CFD are becoming more and more popular. In this paper, from the theoretical basis related to the tension problem of mooring cables, the authors have proposed a simulation model that applies CFD to research and develop simulation model and calculate tension of cables in mooring ship. The goal of this study is to build a simulation model that is closest to reality so that we can study assumptions of different situations. Also, the achieved results will be the basis for proposing warnings to minimize marine accidents at the mooring area at the ports in Vung Tau, especially for tanker fleets. The authors have developed general implementation procedures, and specific calculations for several different input cases on a ship hull based on data of wind and flow characteristics at Vung Tau anchorage area, namely the oil tanker M/T AULAC JUPITER of Au Lac Joint Stock Company.
期刊介绍:
The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.