APPLICATION OF CFD FOR CALCULATION AND SIMULATION OF ANCHOR-CABLE TENSIONS IN MOORING SHIP

Nguyen Dang Khoa Pham, X. Nguyen
{"title":"APPLICATION OF CFD FOR CALCULATION AND SIMULATION OF ANCHOR-CABLE TENSIONS IN MOORING SHIP","authors":"Nguyen Dang Khoa Pham, X. Nguyen","doi":"10.26480/jmerd.05.2019.182.186","DOIUrl":null,"url":null,"abstract":"Computational Fluid Dynamics was applied to early hydrodynamics research, and the name CFD originated here. CFD has been developed, applied, and highly effective in the fields of fluid mechanics and deformation and elastic environments. CFDs are widely applied in advanced sciences and high technology as well as maritime sciences. In recent years, many scientists have effectively exploited and applied CFD and numerical methods for calculating and simulating the hydrodynamics of ocean current on ships. Simulating studies on the effect of ocean current on the tension of anchor-cable by CFD are becoming more and more popular. In this paper, from the theoretical basis related to the tension problem of mooring cables, the authors have proposed a simulation model that applies CFD to research and develop simulation model and calculate tension of cables in mooring ship. The goal of this study is to build a simulation model that is closest to reality so that we can study assumptions of different situations. Also, the achieved results will be the basis for proposing warnings to minimize marine accidents at the mooring area at the ports in Vung Tau, especially for tanker fleets. The authors have developed general implementation procedures, and specific calculations for several different input cases on a ship hull based on data of wind and flow characteristics at Vung Tau anchorage area, namely the oil tanker M/T AULAC JUPITER of Au Lac Joint Stock Company.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/jmerd.05.2019.182.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

Abstract

Computational Fluid Dynamics was applied to early hydrodynamics research, and the name CFD originated here. CFD has been developed, applied, and highly effective in the fields of fluid mechanics and deformation and elastic environments. CFDs are widely applied in advanced sciences and high technology as well as maritime sciences. In recent years, many scientists have effectively exploited and applied CFD and numerical methods for calculating and simulating the hydrodynamics of ocean current on ships. Simulating studies on the effect of ocean current on the tension of anchor-cable by CFD are becoming more and more popular. In this paper, from the theoretical basis related to the tension problem of mooring cables, the authors have proposed a simulation model that applies CFD to research and develop simulation model and calculate tension of cables in mooring ship. The goal of this study is to build a simulation model that is closest to reality so that we can study assumptions of different situations. Also, the achieved results will be the basis for proposing warnings to minimize marine accidents at the mooring area at the ports in Vung Tau, especially for tanker fleets. The authors have developed general implementation procedures, and specific calculations for several different input cases on a ship hull based on data of wind and flow characteristics at Vung Tau anchorage area, namely the oil tanker M/T AULAC JUPITER of Au Lac Joint Stock Company.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFD在系泊船舶锚索张力计算与模拟中的应用
计算流体动力学(Computational Fluid Dynamics)被应用于早期的流体力学研究,CFD这个名称也由此产生。CFD已经在流体力学、变形和弹性环境等领域得到了发展和应用,并且非常有效。差价合约广泛应用于先进科学、高科技和海事科学。近年来,许多科学家已经有效地开发和应用CFD和数值方法来计算和模拟船舶上的洋流流体力学。利用CFD模拟研究海流对锚索张力的影响越来越受到人们的重视。本文从系泊缆索张力问题的相关理论基础出发,提出了一种利用CFD技术研究开发仿真模型并计算系泊船舶缆索张力的仿真模型。本研究的目的是建立一个最接近现实的模拟模型,以便我们可以研究不同情况下的假设。此外,取得的结果将作为建议警告的基础,以尽量减少在昂头港口系泊区发生的海上事故,特别是对油船船队。作者根据澳乐股份有限公司的油船“M/T AULAC JUPITER”在头头锚地的风和流特征数据,制定了一般实施程序,并对船体上的几种不同输入情况进行了具体计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.
期刊最新文献
Disassembling Process Inference Using Positional Relations Matrix for Complicated Machines Modeling of a Zero CO2 and Zero Heat Pollution Compressed Air Engine for the Urban Transport Sector Tools and Computational Machinery for Movement Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration Use of the Method of Guidance by a Required Velocity in Control of Spacecraft Attitude
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1