Targeting Your Preferences: Modelling Micro-Targeting for an Increasingly Diverse Electorate

Toby D. Pilditch, J. Madsen
{"title":"Targeting Your Preferences: Modelling Micro-Targeting for an Increasingly Diverse Electorate","authors":"Toby D. Pilditch, J. Madsen","doi":"10.18564/jasss.4452","DOIUrl":null,"url":null,"abstract":": The use of data to inform and run political campaigning has become an inescapable trend in recent years. In attempting to persuade an electorate, micro-targeted campaigns (MTCs) have been employed to great effect throughthe useof tailoredmessaging andselective targeting. Herewe investigatethe capacityof MTCs to dealwiththediversityofpoliticalpreferencesacrossanelectorate. Moreprecisely,viaanAgent-BasedModelwe simulate various diverse electorates that encompass single issue, multiple issue, swing, and disengaged voters (among others, including combinations thereof) and determine the relative persuasive efficacy of MTCs when pitted against more traditional, population-targeting campaigns. Taking into account the perceived credibility of these campaigns, we find MTCs highly capable of handling greater voter complexity than shown in previous work, and yielding further advantages beyond traditional campaigns in their capacity to avoid inefficient (or even backfiring) interactions – even when fielding a low credibility candidate.","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18564/jasss.4452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

: The use of data to inform and run political campaigning has become an inescapable trend in recent years. In attempting to persuade an electorate, micro-targeted campaigns (MTCs) have been employed to great effect throughthe useof tailoredmessaging andselective targeting. Herewe investigatethe capacityof MTCs to dealwiththediversityofpoliticalpreferencesacrossanelectorate. Moreprecisely,viaanAgent-BasedModelwe simulate various diverse electorates that encompass single issue, multiple issue, swing, and disengaged voters (among others, including combinations thereof) and determine the relative persuasive efficacy of MTCs when pitted against more traditional, population-targeting campaigns. Taking into account the perceived credibility of these campaigns, we find MTCs highly capable of handling greater voter complexity than shown in previous work, and yielding further advantages beyond traditional campaigns in their capacity to avoid inefficient (or even backfiring) interactions – even when fielding a low credibility candidate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瞄准你的偏好:为日益多样化的选民建立微观目标模型
近年来,利用数据为政治竞选提供信息和运作已成为一种不可避免的趋势。在试图说服选民的过程中,通过使用量身定制的信息和选择性的目标,微目标运动(mtc)已经发挥了巨大的作用。在这里,我们调查了MTCs处理跨选民政治偏好多样性的能力。更准确地说,通过基于agent的模型,我们模拟了各种不同的选民,包括单一问题、多个问题、摇摆不定和未参与的选民(其中包括其组合),并确定在与更传统的、以人口为目标的竞选活动进行竞争时,MTCs的相对说服效果。考虑到这些竞选活动的可信度,我们发现mtc比以前的工作更有能力处理更大的选民复杂性,并且在避免低效(甚至适得其反)互动的能力方面比传统竞选活动产生了进一步的优势——即使在派出低可信度的候选人时也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conflicting Information and Compliance with COVID-19 Behavioral Recommendations Particle Swarm Optimization for Calibration in Spatially Explicit Agent-Based Modeling The Role of Reinforcement Learning in the Emergence of Conventions: Simulation Experiments with the Repeated Volunteer's Dilemma Generation of Synthetic Populations in Social Simulations: A Review of Methods and Practices An Integrated Ecological-Social Simulation Model of Farmer Decisions and Cropping System Performance in the Rolling Pampas (Argentina)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1