Javier Laplaza, Albert Pumarola, F. Moreno-Noguer, A. Sanfeliu
{"title":"Attention deep learning based model for predicting the 3D Human Body Pose using the Robot Human Handover Phases","authors":"Javier Laplaza, Albert Pumarola, F. Moreno-Noguer, A. Sanfeliu","doi":"10.1109/RO-MAN50785.2021.9515402","DOIUrl":null,"url":null,"abstract":"This work proposes a human motion prediction model for handover operations. We use in this work, the different phases of the handover operation to improve the human motion predictions. Our attention deep learning based model takes into account the position of the robot’s End Effector (REE) and the phase in the handover operation to predict future human poses. Our model outputs a distribution of possible positions rather than one deterministic position, a key feature in order to allow robots to collaborate with humans. We provide results of the human upper body and the human right hand, also referred as Human End Effector (HEE).The attention deep learning based model has been trained and evaluated with a dataset created using human volunteers and an anthropomorphic robot, simulating handover operations where the robot is the giver and the human the receiver. For each operation, the human skeleton is obtained with an Intel RealSense D435i camera attached inside the robot’s head. The results shown a great improvement of the human’s right hand prediction and 3D body compared with other methods.","PeriodicalId":6854,"journal":{"name":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","volume":"116 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN50785.2021.9515402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This work proposes a human motion prediction model for handover operations. We use in this work, the different phases of the handover operation to improve the human motion predictions. Our attention deep learning based model takes into account the position of the robot’s End Effector (REE) and the phase in the handover operation to predict future human poses. Our model outputs a distribution of possible positions rather than one deterministic position, a key feature in order to allow robots to collaborate with humans. We provide results of the human upper body and the human right hand, also referred as Human End Effector (HEE).The attention deep learning based model has been trained and evaluated with a dataset created using human volunteers and an anthropomorphic robot, simulating handover operations where the robot is the giver and the human the receiver. For each operation, the human skeleton is obtained with an Intel RealSense D435i camera attached inside the robot’s head. The results shown a great improvement of the human’s right hand prediction and 3D body compared with other methods.