Émilie Bélanger, M. Lucotte, B. Grégoire, M. Moingt, S. Paquet, R. Davidson, F. Mertens, C. Passos, C. Romaña
{"title":"Lignin signatures of vegetation and soils in tropical environments","authors":"Émilie Bélanger, M. Lucotte, B. Grégoire, M. Moingt, S. Paquet, R. Davidson, F. Mertens, C. Passos, C. Romaña","doi":"10.12989/AER.2015.4.4.247","DOIUrl":null,"url":null,"abstract":". The few lignin biomarker studies conducted in tropical environments are hampered by having to use references signatures established for plants and soils characteristic of the temperate zone. This study presents a lignin biomarker analysis (vanillyls (V), p-hydroxyls (P), syringyls (S), cinnamyls (C)) of the dominant plant species and soil horizons as well as an analysis of the interrelated terrigenous organic matter (TOM) dynamics between vegetation and soil of the Tapajós river region, an active colonization front in the Brazilian Amazon. We collected and analyzed samples from 17 fresh dominant plant species and 48 soil cores at three depths (0-5 cm, 20-25 cm, 50-55 cm) from primary rainforest, fallow forest, subsistence agriculture fields and pastures. Lignin signatures in tropical plants clearly distinguish from temperate ones with high ratios of Acid/aldehyde of vanillyls ((Ad/Al)v) and P/V+S. Contrary to temperate environments, similarly high ratios in tropical soils are not related to TOM degradation along with pedogenesis but to direct influence of plants growing on them. Lignin signatures of both plants and soils of primary rainforest and fallow forest clearly distinguish from those of non-forested areas, i.e., agriculture fields and pastures. Attalea speciosa Palm trees, an invasive species in all perturbed landscapes of the Amazon, exhibit lignin signatures clearly distinct from other dominant plant species. The study of lignin signatures in tropical areas thus represents a powerful tool to evaluate the impact of primary rainforest clearing on TOM dynamics in tropical areas.","PeriodicalId":7287,"journal":{"name":"Advances in Environmental Research","volume":"52 1","pages":"247-262"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AER.2015.4.4.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
. The few lignin biomarker studies conducted in tropical environments are hampered by having to use references signatures established for plants and soils characteristic of the temperate zone. This study presents a lignin biomarker analysis (vanillyls (V), p-hydroxyls (P), syringyls (S), cinnamyls (C)) of the dominant plant species and soil horizons as well as an analysis of the interrelated terrigenous organic matter (TOM) dynamics between vegetation and soil of the Tapajós river region, an active colonization front in the Brazilian Amazon. We collected and analyzed samples from 17 fresh dominant plant species and 48 soil cores at three depths (0-5 cm, 20-25 cm, 50-55 cm) from primary rainforest, fallow forest, subsistence agriculture fields and pastures. Lignin signatures in tropical plants clearly distinguish from temperate ones with high ratios of Acid/aldehyde of vanillyls ((Ad/Al)v) and P/V+S. Contrary to temperate environments, similarly high ratios in tropical soils are not related to TOM degradation along with pedogenesis but to direct influence of plants growing on them. Lignin signatures of both plants and soils of primary rainforest and fallow forest clearly distinguish from those of non-forested areas, i.e., agriculture fields and pastures. Attalea speciosa Palm trees, an invasive species in all perturbed landscapes of the Amazon, exhibit lignin signatures clearly distinct from other dominant plant species. The study of lignin signatures in tropical areas thus represents a powerful tool to evaluate the impact of primary rainforest clearing on TOM dynamics in tropical areas.