Yan-Bo Lin, Yuan-Shan Lee, Tuan Q. Pham, Tzu-Chiang Tai, Jia-Ching Wang
{"title":"A novel approach for single channel source separation","authors":"Yan-Bo Lin, Yuan-Shan Lee, Tuan Q. Pham, Tzu-Chiang Tai, Jia-Ching Wang","doi":"10.1109/ICCE-TW.2016.7521063","DOIUrl":null,"url":null,"abstract":"The purpose of single source separation is to recover a particular signal from a mixed signal. This work develops a novel source separation method for use with an automatic speech recognition (ASR) system. The proposed method is based on non-negative matrix factorization (NMF), which is extensively used in single channel source separation. In the cost function, a flexible distance, αβ-divergence, is used. Additionally, a mixture signal in high-dimensional space contains a low-dimensional manifold. To preserve this embedded structure, a graph regularization constraint is added to the objective function for optimization. The experimental results thus obtained reveal that the proposed method outperforms baseline methods.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"140 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7521063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of single source separation is to recover a particular signal from a mixed signal. This work develops a novel source separation method for use with an automatic speech recognition (ASR) system. The proposed method is based on non-negative matrix factorization (NMF), which is extensively used in single channel source separation. In the cost function, a flexible distance, αβ-divergence, is used. Additionally, a mixture signal in high-dimensional space contains a low-dimensional manifold. To preserve this embedded structure, a graph regularization constraint is added to the objective function for optimization. The experimental results thus obtained reveal that the proposed method outperforms baseline methods.