A tilt-wing VTOL UAV configuration: Flight dynamics modelling and transition control simulation

A. C. Daud Filho, E. Belo
{"title":"A tilt-wing VTOL UAV configuration: Flight dynamics modelling and transition control simulation","authors":"A. C. Daud Filho, E. Belo","doi":"10.1017/aer.2023.34","DOIUrl":null,"url":null,"abstract":"\n This paper aims to present a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) configuration and numerically simulate its flight transition from hover to cruise and from cruise to hover. It can tilt the canard and wing along with two attached propellers. Additionally, two fixed front propellers are pointing upwards. Multi-body equations of motion are derived for this concept of aircraft, which are used to compute the flight transition trajectory from hover to cruise configuration. Furthermore, a transition control algorithm based on gain scheduling is described, which stabilises the aircraft while it accelerates from hover to cruise, gradually tilting the wing along with its propellers, sequentially switching between equilibrium states, as the stability cost functions thresholds are reached. The transition control algorithm of the conceptual aircraft model is numerically simulated.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to present a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) configuration and numerically simulate its flight transition from hover to cruise and from cruise to hover. It can tilt the canard and wing along with two attached propellers. Additionally, two fixed front propellers are pointing upwards. Multi-body equations of motion are derived for this concept of aircraft, which are used to compute the flight transition trajectory from hover to cruise configuration. Furthermore, a transition control algorithm based on gain scheduling is described, which stabilises the aircraft while it accelerates from hover to cruise, gradually tilting the wing along with its propellers, sequentially switching between equilibrium states, as the stability cost functions thresholds are reached. The transition control algorithm of the conceptual aircraft model is numerically simulated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倾翼垂直起降无人机配置:飞行动力学建模和过渡控制仿真
提出了一种垂直起降无人机(VTOL UAV)构型,并对其悬停到巡航、巡航到悬停的飞行过程进行了数值模拟。它可以倾斜鸭翼和机翼与两个附加的螺旋桨。另外,两个固定的前螺旋桨指向上方。推导了该概念飞行器的多体运动方程,用于计算悬停到巡航构型的飞行过渡轨迹。在此基础上,提出了一种基于增益调度的过渡控制算法,该算法使飞机在从悬停加速到巡航的过程中保持稳定,随着稳定代价函数阈值的达到,机翼随螺旋桨逐渐倾斜,在平衡状态之间依次切换。对概念飞机模型的过渡控制算法进行了数值仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spray behaviour of hydro-treated ester fatty acids fuel made from used cooking oil at low injection pressures Visualising flight regimes using self-organising maps A folding wing system for guided ammunitions: mechanism design, manufacturing and real-time results with LQR, LQI, SMC and SOSMC Re-entry vehicle performance analysis under the control of lateral jet Spacecraft attitude control based on generalised dynamic inversion with adaptive neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1