GOMPERTZ REGRESSION MODEL WITH GAMMA FRAILTY: A STUDY ON THE APPLICATION IN LUNG CANCER

V. Tomazella, E. Milani, Teresa C. M. Dias
{"title":"GOMPERTZ REGRESSION MODEL WITH GAMMA FRAILTY: A STUDY ON THE APPLICATION IN LUNG CANCER","authors":"V. Tomazella, E. Milani, Teresa C. M. Dias","doi":"10.28951/RBB.V36I4.312","DOIUrl":null,"url":null,"abstract":"Survival models with frailty are used when some variables are non-available to explain the occurrence time of an event of interest. This non-availability may be considered as a random effect related to unobserved covariates, or that cannot be measured, such as environmental or genetic factors. This paper focuses on the Gamma-Gompertz (denoted by G-G) model that is one of a class of models that investigate the effects of unobservable heterogeneity. We assume that the baseline mortality rate in the G-G model is the Gompertz model, in which mortality increases exponentially with age and the frailty is a fixed property of the individual, and the distribution of frailty is a gamma distribution. The proposed methodology uses the Laplace transform to find the unconditional survival function in the individual frailty. Estimation is based on maximum likelihood methods and this distribution is compared with its particular case. A simulation study examines the bias, the mean squared errors and the coverage probabilities considering various samples sizes and censored data. A real example with lung cancer data illustrates the applicability of the methodology, where we compared the G-G and without frailty models via criteria which select thebest fitted model to the data. ","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V36I4.312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

Survival models with frailty are used when some variables are non-available to explain the occurrence time of an event of interest. This non-availability may be considered as a random effect related to unobserved covariates, or that cannot be measured, such as environmental or genetic factors. This paper focuses on the Gamma-Gompertz (denoted by G-G) model that is one of a class of models that investigate the effects of unobservable heterogeneity. We assume that the baseline mortality rate in the G-G model is the Gompertz model, in which mortality increases exponentially with age and the frailty is a fixed property of the individual, and the distribution of frailty is a gamma distribution. The proposed methodology uses the Laplace transform to find the unconditional survival function in the individual frailty. Estimation is based on maximum likelihood methods and this distribution is compared with its particular case. A simulation study examines the bias, the mean squared errors and the coverage probabilities considering various samples sizes and censored data. A real example with lung cancer data illustrates the applicability of the methodology, where we compared the G-G and without frailty models via criteria which select thebest fitted model to the data. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有γ脆弱的Gompertz回归模型在肺癌中的应用研究
当某些变量无法解释感兴趣的事件的发生时间时,使用带有脆弱性的生存模型。这种不可获得性可能被认为是与未观察到的协变量相关的随机效应,或者是无法测量的随机效应,例如环境或遗传因素。本文关注的是Gamma-Gompertz(用G-G表示)模型,它是一类研究不可观测异质性影响的模型之一。我们假设G-G模型中的基线死亡率为Gompertz模型,其中死亡率随年龄呈指数增长,脆弱性是个体的固定属性,脆弱性的分布为gamma分布。该方法利用拉普拉斯变换求个体脆弱状态下的无条件生存函数。估计是基于极大似然方法,并将这种分布与它的特殊情况进行比较。模拟研究考察了考虑不同样本量和截尾数据的偏差、均方误差和覆盖概率。肺癌数据的一个真实例子说明了该方法的适用性,我们通过选择最适合数据的模型的标准来比较G-G和无脆弱性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1