Regression model with artificial neural network for anaerobic digestion of wastewater treatment

R. Parthiban, L. Parthiban
{"title":"Regression model with artificial neural network for anaerobic digestion of wastewater treatment","authors":"R. Parthiban, L. Parthiban","doi":"10.1109/GTEC.2011.6167689","DOIUrl":null,"url":null,"abstract":"Regression analysis can be used to model the relationship between predictor and response variables and is a good choice when all the predictor variables are numeric and continuous valued. In this paper, multilayer perceptron neural network is used for predicting the experimental values obtained in a laboratory scale system of anaerobic tapered fluidized bed reactor (ATFBR). The system study is the anaerobic digestion of synthetic wastewater derived from the starch processing industries. The input parameters considered for modeling are flow rate, CODin, pHin and hydraulic retention time. The output parameters are biogas yield and pHout. The Mean Square Error (MSE) obtained for the test dataset obtained with experimental set-up is as low as 0.1416.","PeriodicalId":13706,"journal":{"name":"International Conference on Green technology and environmental Conservation (GTEC-2011)","volume":"90 1","pages":"332-335"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green technology and environmental Conservation (GTEC-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTEC.2011.6167689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Regression analysis can be used to model the relationship between predictor and response variables and is a good choice when all the predictor variables are numeric and continuous valued. In this paper, multilayer perceptron neural network is used for predicting the experimental values obtained in a laboratory scale system of anaerobic tapered fluidized bed reactor (ATFBR). The system study is the anaerobic digestion of synthetic wastewater derived from the starch processing industries. The input parameters considered for modeling are flow rate, CODin, pHin and hydraulic retention time. The output parameters are biogas yield and pHout. The Mean Square Error (MSE) obtained for the test dataset obtained with experimental set-up is as low as 0.1416.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厌氧消化废水处理的人工神经网络回归模型
回归分析可以用来模拟预测变量和响应变量之间的关系,当所有的预测变量都是数值和连续值时,回归分析是一个很好的选择。本文采用多层感知器神经网络对实验室规模厌氧锥形流化床反应器(ATFBR)的实验值进行预测。本系统研究的是淀粉加工工业合成废水的厌氧消化。建模时考虑的输入参数为流量、CODin、pHin和水力滞留时间。输出参数为沼气产率和pHout。实验设置得到的测试数据集的均方误差(MSE)低至0.1416。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright pages An invitro dissolution release estimation of sodium fusidate from its osteomyelitis formulation Biomarker responses in fish exposed to industrial effluent Atmospheric microfungal biopollution in city houses of hosur, a industrial city of Tamilnadu, India Adsorption efficacy of chitosan nanoparticles from Cunnighamella elegans on RBB dye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1