Alyssa C. Anderson , Aubrie R.M. James , Elizabeth Magno , Monica Geber
{"title":"Bee species exhibit different phenological trajectories in communities of annual flowering plants in the genus Clarkia","authors":"Alyssa C. Anderson , Aubrie R.M. James , Elizabeth Magno , Monica Geber","doi":"10.1016/j.ecochg.2021.100031","DOIUrl":null,"url":null,"abstract":"<div><p>Phenological matching between the timing of flowering and pollinator activity is critically important for the persistence of pollination systems globally. Phenological mismatch between plants and their insect pollinators can occur if flowering and adult insect activity do not occur simultaneously. There is evidence that the phenological trajectories vary among bee species, but little has been done to compare these trajectories with the phenology of the corresponding floral community. In this work, we use daily pan trapping across nine different annual <em>Clarkia</em> (Onagraceae) plant communities that vary in <em>Clarkia</em> species composition to estimate the phenological trajectory (within-season abundance curve) of the two most abundant bee pollinators - <em>Lasioglossum incompletum</em>, a generalist, and <em>Hesperapis regularis</em>, a <em>Clarkia</em> specialist - over the course of a <em>Clarkia</em> flowering season in California USA. <em>Clarkia</em> flower at the end of the winter annual growing season when all other winter annual plants have senesced, and therefore are phenologically separate from other flowering plants. We find that <em>Hesperapis</em> pollinator abundances follow the same phenological trajectory as <em>Clarkia</em> floral abundances in all community types. In contrast, <em>Lasioglossum</em> abundances do not track <em>Clarkia</em> floral abundance through time. Our results demonstrate that <em>Clarkia</em> exhibit closer phenological matching with <em>Hesperapis</em> than with <em>Lasioglossum.</em> These findings imply that pollinator communities may not respond monolithically to changes in the environment. Future research should study the phenological trajectories of plants and pollinators in different systems to determine if this pattern is common and repeatable.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100031"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666900521000319/pdfft?md5=6c368a181b4cb08eb9a79e0b37db09ce&pid=1-s2.0-S2666900521000319-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900521000319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Phenological matching between the timing of flowering and pollinator activity is critically important for the persistence of pollination systems globally. Phenological mismatch between plants and their insect pollinators can occur if flowering and adult insect activity do not occur simultaneously. There is evidence that the phenological trajectories vary among bee species, but little has been done to compare these trajectories with the phenology of the corresponding floral community. In this work, we use daily pan trapping across nine different annual Clarkia (Onagraceae) plant communities that vary in Clarkia species composition to estimate the phenological trajectory (within-season abundance curve) of the two most abundant bee pollinators - Lasioglossum incompletum, a generalist, and Hesperapis regularis, a Clarkia specialist - over the course of a Clarkia flowering season in California USA. Clarkia flower at the end of the winter annual growing season when all other winter annual plants have senesced, and therefore are phenologically separate from other flowering plants. We find that Hesperapis pollinator abundances follow the same phenological trajectory as Clarkia floral abundances in all community types. In contrast, Lasioglossum abundances do not track Clarkia floral abundance through time. Our results demonstrate that Clarkia exhibit closer phenological matching with Hesperapis than with Lasioglossum. These findings imply that pollinator communities may not respond monolithically to changes in the environment. Future research should study the phenological trajectories of plants and pollinators in different systems to determine if this pattern is common and repeatable.