{"title":"On the feasibility of dynamic substructuring for hybrid testing of vibrating structures","authors":"An Hu, P. Paoletti","doi":"10.1115/1.4062256","DOIUrl":null,"url":null,"abstract":"\n Dynamically substructured systems (DSS) are a typical technique to achieve real-time numerical simulations combined with physically tested components. However, the rigorous feasibility analysis before the implementation is missing. This paper is aimed to fill this gap by establishing rigorous conditions for when DSS is suitable for dynamic testing. The proposed method is based on novel symbolic recursive formulations for the transfer functions describing a generic lumped parameter vibrating structure, enabling the analysis of structural and other properties without requiring the computation of explicit symbolic expressions for the transfer functions involved, representing a significant breakthrough as it allows to perform feasibility analysis in analytical form, rather than solely relying on numerical approaches. The series of analytical conclusions presented in this paper, and future ones unlocked by the proposed approach, will significantly enrich the research in the community of DSS and structural vibrations. In particular, the proposed approach allows performing analysis of causality, controllability and observability using much reduced knowledge of the structure, thus significantly simplifying such analysis. Analytical conclusions on stability can also be made with the help of novel recursive form, removing the need of repeatedly calculating the roots of characteristic equations, a task that can be performed only via numerical approaches and for which analytical results are not available. The proposed methodology can be applied to a whole class of vibration problems and is not linked to any specific structure, going beyond the specific examples available in the literature.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamically substructured systems (DSS) are a typical technique to achieve real-time numerical simulations combined with physically tested components. However, the rigorous feasibility analysis before the implementation is missing. This paper is aimed to fill this gap by establishing rigorous conditions for when DSS is suitable for dynamic testing. The proposed method is based on novel symbolic recursive formulations for the transfer functions describing a generic lumped parameter vibrating structure, enabling the analysis of structural and other properties without requiring the computation of explicit symbolic expressions for the transfer functions involved, representing a significant breakthrough as it allows to perform feasibility analysis in analytical form, rather than solely relying on numerical approaches. The series of analytical conclusions presented in this paper, and future ones unlocked by the proposed approach, will significantly enrich the research in the community of DSS and structural vibrations. In particular, the proposed approach allows performing analysis of causality, controllability and observability using much reduced knowledge of the structure, thus significantly simplifying such analysis. Analytical conclusions on stability can also be made with the help of novel recursive form, removing the need of repeatedly calculating the roots of characteristic equations, a task that can be performed only via numerical approaches and for which analytical results are not available. The proposed methodology can be applied to a whole class of vibration problems and is not linked to any specific structure, going beyond the specific examples available in the literature.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.