Zhijian Liu, Zheng Zhang, Jiabin Lv, Juntao Ma, G. Yao, Junzhou He, Guoqing Cao
{"title":"Quantitative Evaluation of the Transmission and Removal of Harmful Smoke Particles in the Operating Room: Full-Scale Experimental and Numerical Study","authors":"Zhijian Liu, Zheng Zhang, Jiabin Lv, Juntao Ma, G. Yao, Junzhou He, Guoqing Cao","doi":"10.1155/2023/9669528","DOIUrl":null,"url":null,"abstract":"A large amount of surgical smoke in electrosurgery seriously deteriorates the clean environment of the operating room and can potentially harm medical staff and patients. Exploring the distribution and removal of indoor particulate matter and selecting efficient ventilation patterns are effective ways to control harmful smoke. Therefore, in this study, we combined simulations and full-scale experiments to quantitatively explore the high-concentration spatial regions of particles and compared three ventilation patterns: vertical laminar airflow (VLAF), horizontal laminar airflow (HLAF), and hybrid ventilation, wherein unidirectional airflow (UDAF) was applied to the operating table along with peripheral mixing (UDAF + mixing). We found that simple laminar flow ventilation was significantly affected by the equipment layout and air change rate (air changes per hour; ACH), and the smoke particles were distributed in large amounts in the operating area and could not be removed completely. Conversely, hybrid ventilation can work effectively, and the optimal ACH is approximately 60, which can remove nearly 72% of smoke particles. The airflow distribution in the operating room is also an important factor affecting the distribution and removal of smoke particles. Therefore, medical staff should avoid prolonged exposure to areas with high particle concentrations and particle removal paths.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1155/2023/9669528","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A large amount of surgical smoke in electrosurgery seriously deteriorates the clean environment of the operating room and can potentially harm medical staff and patients. Exploring the distribution and removal of indoor particulate matter and selecting efficient ventilation patterns are effective ways to control harmful smoke. Therefore, in this study, we combined simulations and full-scale experiments to quantitatively explore the high-concentration spatial regions of particles and compared three ventilation patterns: vertical laminar airflow (VLAF), horizontal laminar airflow (HLAF), and hybrid ventilation, wherein unidirectional airflow (UDAF) was applied to the operating table along with peripheral mixing (UDAF + mixing). We found that simple laminar flow ventilation was significantly affected by the equipment layout and air change rate (air changes per hour; ACH), and the smoke particles were distributed in large amounts in the operating area and could not be removed completely. Conversely, hybrid ventilation can work effectively, and the optimal ACH is approximately 60, which can remove nearly 72% of smoke particles. The airflow distribution in the operating room is also an important factor affecting the distribution and removal of smoke particles. Therefore, medical staff should avoid prolonged exposure to areas with high particle concentrations and particle removal paths.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.