3D printing of high-precision and ferromagnetic functional devices

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-04-13 DOI:10.1088/2631-7990/acccbb
Zhiyuan Huang, Guangbin Shao, Dekai Zhou, Xinghong Deng, J. Qiao, Longqiu Li
{"title":"3D printing of high-precision and ferromagnetic functional devices","authors":"Zhiyuan Huang, Guangbin Shao, Dekai Zhou, Xinghong Deng, J. Qiao, Longqiu Li","doi":"10.1088/2631-7990/acccbb","DOIUrl":null,"url":null,"abstract":"The development of projection-based stereolithography additive manufacturing techniques and magnetic photosensitive resins has provided a powerful approach to fabricate miniaturized magnetic functional devices with complex three-dimensional spatial structures. However, the present magnetic photosensitive resins face great challenges in the trade-off between high ferromagnetism and excellent printing quality. To address these challenges, we develop a novel NdFeB-Fe3O4 magnetic photosensitive resin comprising 20 wt.% solid loading of magnetic particles, which can be used to fabricate high-precision and ferromagnetic functional devices via micro-continuous liquid interface production process. This resin combining ferromagnetic NdFeB microparticles and strongly absorbing Fe3O4 nanoparticles is able to provide ferromagnetic capabilities and excellent printing quality simultaneously compared to both existing soft and hard magnetic photosensitive resins. The established penetration depth model reveals the effect of particle size, solid loading, and absorbance on the curing characteristics of magnetic photosensitive resin. A high-precision forming and ferromagnetic capability of the NdFeB-Fe3O4 magnetic photosensitive resin are comprehensively demonstrated. It is found that the photosensitive resin (NdFeB:Fe3O4 = 1:1) can print samples with sub-40 μm fine features, reduced by 87% compared to existing hard magnetic photosensitive resin, and exhibits significantly enhanced coercivity and remanence in comparison with existing soft magnetic photosensitive resins, showing by an increase of 24 times and 6 times, respectively. The reported NdFeB-Fe3O4 magnetic photosensitive resin is anticipated to provide a new functional material for the design and manufacture of next-generation micro-robotics, electromagnetic sensor, and magneto-thermal devices.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"165 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acccbb","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

Abstract

The development of projection-based stereolithography additive manufacturing techniques and magnetic photosensitive resins has provided a powerful approach to fabricate miniaturized magnetic functional devices with complex three-dimensional spatial structures. However, the present magnetic photosensitive resins face great challenges in the trade-off between high ferromagnetism and excellent printing quality. To address these challenges, we develop a novel NdFeB-Fe3O4 magnetic photosensitive resin comprising 20 wt.% solid loading of magnetic particles, which can be used to fabricate high-precision and ferromagnetic functional devices via micro-continuous liquid interface production process. This resin combining ferromagnetic NdFeB microparticles and strongly absorbing Fe3O4 nanoparticles is able to provide ferromagnetic capabilities and excellent printing quality simultaneously compared to both existing soft and hard magnetic photosensitive resins. The established penetration depth model reveals the effect of particle size, solid loading, and absorbance on the curing characteristics of magnetic photosensitive resin. A high-precision forming and ferromagnetic capability of the NdFeB-Fe3O4 magnetic photosensitive resin are comprehensively demonstrated. It is found that the photosensitive resin (NdFeB:Fe3O4 = 1:1) can print samples with sub-40 μm fine features, reduced by 87% compared to existing hard magnetic photosensitive resin, and exhibits significantly enhanced coercivity and remanence in comparison with existing soft magnetic photosensitive resins, showing by an increase of 24 times and 6 times, respectively. The reported NdFeB-Fe3O4 magnetic photosensitive resin is anticipated to provide a new functional material for the design and manufacture of next-generation micro-robotics, electromagnetic sensor, and magneto-thermal devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高精度、铁磁功能器件的3D打印
基于投影的立体光刻增材制造技术和磁性光敏树脂的发展为制造具有复杂三维空间结构的小型化磁性功能器件提供了强有力的途径。然而,目前的磁性光敏树脂在高铁磁性和优异印刷质量之间的权衡面临着巨大的挑战。为了解决这些挑战,我们开发了一种新型的NdFeB-Fe3O4磁性光敏树脂,该树脂含有20 wt.%的固体负载磁性颗粒,可用于通过微连续液界面生产工艺制造高精度铁磁功能器件。与现有的软磁和硬磁光敏树脂相比,这种树脂结合了铁磁钕铁硼微粒和强吸收Fe3O4纳米颗粒,能够同时提供铁磁能力和优异的印刷质量。建立的渗透深度模型揭示了粒径、固体载荷和吸光度对磁性光敏树脂固化特性的影响。全面论证了钕铁硼- fe3o4磁性光敏树脂的高精度成形和铁磁性能。结果表明,该光敏树脂(NdFeB:Fe3O4 = 1:1)可以打印出40 μm以下的样品,比现有的硬磁光敏树脂降低了87%;与现有的软磁光敏树脂相比,其矫顽力和剩余力显著增强,分别提高了24倍和6倍。报道的NdFeB-Fe3O4磁性光敏树脂有望为下一代微型机器人、电磁传感器和磁热器件的设计和制造提供一种新的功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1