{"title":"Classification of Sleep Stages from Polysomnography Signals with Deep Learning and Machine Learning Methods","authors":"Sinan Altun","doi":"10.31466/kfbd.1246482","DOIUrl":null,"url":null,"abstract":"Uyku, fiziksel ve zihinsel sağlığımızın günlük olarak yenilenmesi için önemli bir aktivite zamanıdır ve yaşamımızın üçte birini kaplar. Uyku bozuklukları, psikiyatrik bozuklukları şiddetlendirebilir veya semptomlarına neden olabilir. Bunlardan ilki uyku apnesi olabilir. Diğer bir neden ise huzursuz bacak sendromudur. Depresyon, anksiyete, ağrı ve bazı fiziksel problemler de uykusuzluğa neden olabilir. Uyku apnesi, sinir sistemi probleminden veya soluk yolu tıkanıklığından kaynaklanabilir. Uyku evrelerini incelemek, uyku ile ilgili bozuklukların teşhisinde çok önemlidir. Uyku evreleri de uyku sırasında kişinin yanında olunarak bir profesyonel tarafından belirlenir. Ortalama 8 saatlik uyku evre teşhis süresi düşünüldüğünde, bu bir profesyonel için oldukça uzun bir süredir. Ayrıca uyku evrelerinin tanımlanması ciddi bir uzmanlık ve bilgi birikimi gerektirmektedir. Literatürde tanımlanan hastalıkların teşhis ve tedavi sürecini otomatik olarak yapan bilgisayarlı teşhis sistemi teorik araştırmalara dayalı olarak uygulanmaya başlandı. Bu çalışma, insan sağlığını doğrudan etkileyen uyku bozukluklarının teşhisinde önemli parametreler olan uyku evrelerini otomatik olarak oluşturmak için derin öğrenme ve makine öğrenmesi tekniklerini kullanmayı amaçlamaktadır. Bu çalışmada, rastgele orman algoritması en başarılı sınıflandırmayı (doğruluk = 0,974, duyarlılık = 0,932, özgüllük = 0,983) gerçekleştirmiştir. Bu gelişmiş sınıflama başarısı, uykuyla ilişkili bozuklukların teşhisinde/tedavisinde önemli bir faktör olan uyku evrelerini otomatik olarak belirleyebilen bilgisayar destekli bir teşhis sistemi oluşturmanın uygulanabilirliğini göstermektedir.","PeriodicalId":17795,"journal":{"name":"Karadeniz Fen Bilimleri Dergisi","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karadeniz Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31466/kfbd.1246482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Uyku, fiziksel ve zihinsel sağlığımızın günlük olarak yenilenmesi için önemli bir aktivite zamanıdır ve yaşamımızın üçte birini kaplar. Uyku bozuklukları, psikiyatrik bozuklukları şiddetlendirebilir veya semptomlarına neden olabilir. Bunlardan ilki uyku apnesi olabilir. Diğer bir neden ise huzursuz bacak sendromudur. Depresyon, anksiyete, ağrı ve bazı fiziksel problemler de uykusuzluğa neden olabilir. Uyku apnesi, sinir sistemi probleminden veya soluk yolu tıkanıklığından kaynaklanabilir. Uyku evrelerini incelemek, uyku ile ilgili bozuklukların teşhisinde çok önemlidir. Uyku evreleri de uyku sırasında kişinin yanında olunarak bir profesyonel tarafından belirlenir. Ortalama 8 saatlik uyku evre teşhis süresi düşünüldüğünde, bu bir profesyonel için oldukça uzun bir süredir. Ayrıca uyku evrelerinin tanımlanması ciddi bir uzmanlık ve bilgi birikimi gerektirmektedir. Literatürde tanımlanan hastalıkların teşhis ve tedavi sürecini otomatik olarak yapan bilgisayarlı teşhis sistemi teorik araştırmalara dayalı olarak uygulanmaya başlandı. Bu çalışma, insan sağlığını doğrudan etkileyen uyku bozukluklarının teşhisinde önemli parametreler olan uyku evrelerini otomatik olarak oluşturmak için derin öğrenme ve makine öğrenmesi tekniklerini kullanmayı amaçlamaktadır. Bu çalışmada, rastgele orman algoritması en başarılı sınıflandırmayı (doğruluk = 0,974, duyarlılık = 0,932, özgüllük = 0,983) gerçekleştirmiştir. Bu gelişmiş sınıflama başarısı, uykuyla ilişkili bozuklukların teşhisinde/tedavisinde önemli bir faktör olan uyku evrelerini otomatik olarak belirleyebilen bilgisayar destekli bir teşhis sistemi oluşturmanın uygulanabilirliğini göstermektedir.