Hamming Distance Approach to Reduce Role Mining Scalability

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140654
Nazirah Abd. Hamid, S. R. Selamat, R. Ahmad, M. Mohamad
{"title":"Hamming Distance Approach to Reduce Role Mining Scalability","authors":"Nazirah Abd. Hamid, S. R. Selamat, R. Ahmad, M. Mohamad","doi":"10.14569/ijacsa.2023.0140654","DOIUrl":null,"url":null,"abstract":"Role-based Access Control has become the standard of practice for many organizations for restricting control on limited resources in complicated infrastructures or systems. The main objective of the role mining development is to define appropriate roles that can be applied to the specified security access policies. However, the mining scales in this kind of setting are extensive and can cause a huge load on the management of the systems. To resolve the above mentioned problems, this paper proposes a model that implements Hamming Distance approach by rearranging the existing matrix as the input data to overcome the scalability problem. The findings of the model show that the generated file size of all datasets substantially have been reduced compared to the original datasets It has also shown that Hamming Distance technique can successfully reduce the mining scale of datasets ranging between 30% and 47% and produce better candidate roles. Keywords—Role-based Access Control; role mining; hamming distance; data mining","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"116 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Role-based Access Control has become the standard of practice for many organizations for restricting control on limited resources in complicated infrastructures or systems. The main objective of the role mining development is to define appropriate roles that can be applied to the specified security access policies. However, the mining scales in this kind of setting are extensive and can cause a huge load on the management of the systems. To resolve the above mentioned problems, this paper proposes a model that implements Hamming Distance approach by rearranging the existing matrix as the input data to overcome the scalability problem. The findings of the model show that the generated file size of all datasets substantially have been reduced compared to the original datasets It has also shown that Hamming Distance technique can successfully reduce the mining scale of datasets ranging between 30% and 47% and produce better candidate roles. Keywords—Role-based Access Control; role mining; hamming distance; data mining
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降低角色挖掘可扩展性的汉明距离方法
基于角色的访问控制已经成为许多组织的标准实践,用于限制对复杂基础设施或系统中有限资源的控制。角色挖掘开发的主要目标是定义可应用于指定安全访问策略的适当角色。然而,在这种环境下的采矿规模是广泛的,并且会给系统的管理带来巨大的负担。为了解决上述问题,本文提出了一种模型,通过重新排列现有矩阵作为输入数据来实现汉明距离方法,以克服可扩展性问题。该模型的研究结果表明,与原始数据集相比,所有数据集生成的文件大小都大大减小了,并且表明汉明距离技术可以成功地将数据集的挖掘规模减小30%至47%,并产生更好的候选角色。关键词:基于角色的访问控制;角色采矿;汉明距离;数据挖掘
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1