Chit-Kwan Lin, Andreas Wild, G. Chinya, Tsung-Han Lin, Mike Davies, Hong Wang
{"title":"Mapping spiking neural networks onto a manycore neuromorphic architecture","authors":"Chit-Kwan Lin, Andreas Wild, G. Chinya, Tsung-Han Lin, Mike Davies, Hong Wang","doi":"10.1145/3296979.3192371","DOIUrl":null,"url":null,"abstract":"We present a compiler for Loihi, a novel manycore neuromorphic processor that features a programmable, on-chip learning engine for training and executing spiking neural networks (SNNs). An SNN is distinguished from other neural networks in that (1) its independent computing units, or \"neurons\", communicate with others only through spike messages; and (2) each neuron evaluates local learning rules, which are functions of spike arrival and departure timings, to modify its local state. The collective neuronal state dynamics of an SNN form a nonlinear dynamical system that can be cast as an unconventional model of computation. To realize such an SNN on Loihi requires each constituent neuron to locally store and independently update its own spike timing information. However, each Loihi core has limited resources for this purpose and these must be shared by neurons assigned to the same core. In this work, we present a compiler for Loihi that maps the neurons of an SNN onto and across Loihi's cores efficiently. We show that a poor neuron-to-core mapping can incur significant energy costs and address this with a greedy algorithm that compiles SNNs onto Loihi in a power-efficient manner. In so doing, we highlight the need for further development of compilers for this new, emerging class of architectures.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"15 1","pages":"78 - 89"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296979.3192371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 36
Abstract
We present a compiler for Loihi, a novel manycore neuromorphic processor that features a programmable, on-chip learning engine for training and executing spiking neural networks (SNNs). An SNN is distinguished from other neural networks in that (1) its independent computing units, or "neurons", communicate with others only through spike messages; and (2) each neuron evaluates local learning rules, which are functions of spike arrival and departure timings, to modify its local state. The collective neuronal state dynamics of an SNN form a nonlinear dynamical system that can be cast as an unconventional model of computation. To realize such an SNN on Loihi requires each constituent neuron to locally store and independently update its own spike timing information. However, each Loihi core has limited resources for this purpose and these must be shared by neurons assigned to the same core. In this work, we present a compiler for Loihi that maps the neurons of an SNN onto and across Loihi's cores efficiently. We show that a poor neuron-to-core mapping can incur significant energy costs and address this with a greedy algorithm that compiles SNNs onto Loihi in a power-efficient manner. In so doing, we highlight the need for further development of compilers for this new, emerging class of architectures.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).