Mapping spiking neural networks onto a manycore neuromorphic architecture

Q1 Computer Science ACM Sigplan Notices Pub Date : 2018-06-11 DOI:10.1145/3296979.3192371
Chit-Kwan Lin, Andreas Wild, G. Chinya, Tsung-Han Lin, Mike Davies, Hong Wang
{"title":"Mapping spiking neural networks onto a manycore neuromorphic architecture","authors":"Chit-Kwan Lin, Andreas Wild, G. Chinya, Tsung-Han Lin, Mike Davies, Hong Wang","doi":"10.1145/3296979.3192371","DOIUrl":null,"url":null,"abstract":"We present a compiler for Loihi, a novel manycore neuromorphic processor that features a programmable, on-chip learning engine for training and executing spiking neural networks (SNNs). An SNN is distinguished from other neural networks in that (1) its independent computing units, or \"neurons\", communicate with others only through spike messages; and (2) each neuron evaluates local learning rules, which are functions of spike arrival and departure timings, to modify its local state. The collective neuronal state dynamics of an SNN form a nonlinear dynamical system that can be cast as an unconventional model of computation. To realize such an SNN on Loihi requires each constituent neuron to locally store and independently update its own spike timing information. However, each Loihi core has limited resources for this purpose and these must be shared by neurons assigned to the same core. In this work, we present a compiler for Loihi that maps the neurons of an SNN onto and across Loihi's cores efficiently. We show that a poor neuron-to-core mapping can incur significant energy costs and address this with a greedy algorithm that compiles SNNs onto Loihi in a power-efficient manner. In so doing, we highlight the need for further development of compilers for this new, emerging class of architectures.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"15 1","pages":"78 - 89"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296979.3192371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 36

Abstract

We present a compiler for Loihi, a novel manycore neuromorphic processor that features a programmable, on-chip learning engine for training and executing spiking neural networks (SNNs). An SNN is distinguished from other neural networks in that (1) its independent computing units, or "neurons", communicate with others only through spike messages; and (2) each neuron evaluates local learning rules, which are functions of spike arrival and departure timings, to modify its local state. The collective neuronal state dynamics of an SNN form a nonlinear dynamical system that can be cast as an unconventional model of computation. To realize such an SNN on Loihi requires each constituent neuron to locally store and independently update its own spike timing information. However, each Loihi core has limited resources for this purpose and these must be shared by neurons assigned to the same core. In this work, we present a compiler for Loihi that maps the neurons of an SNN onto and across Loihi's cores efficiently. We show that a poor neuron-to-core mapping can incur significant energy costs and address this with a greedy algorithm that compiles SNNs onto Loihi in a power-efficient manner. In so doing, we highlight the need for further development of compilers for this new, emerging class of architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将脉冲神经网络映射到多核神经形态架构上
Loihi是一种新颖的多核神经形态处理器,具有可编程的片上学习引擎,用于训练和执行尖峰神经网络(snn)。SNN与其他神经网络的区别在于:(1)其独立的计算单元或“神经元”仅通过尖峰信息与其他神经网络进行通信;(2)每个神经元评估局部学习规则,即脉冲到达和离开时间的函数,以修改其局部状态。SNN的集体神经元状态动力学形成了一个非线性动力系统,可以作为一种非常规的计算模型。要在Loihi上实现这样的SNN,需要每个组成神经元局部存储并独立更新自己的尖峰时间信息。然而,每个Loihi核心用于此目的的资源有限,这些资源必须由分配给同一核心的神经元共享。在这项工作中,我们提出了一个Loihi编译器,它可以有效地将SNN的神经元映射到Loihi的核心上。我们表明,一个糟糕的神经元到核映射会产生显著的能量成本,并通过一种贪婪算法来解决这个问题,该算法以一种节能的方式将snn编译到Loihi上。在这样做的过程中,我们强调了为这类新兴的体系结构进一步开发编译器的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Sigplan Notices
ACM Sigplan Notices 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
0
审稿时长
2-4 weeks
期刊介绍: The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).
期刊最新文献
Outcomes of Endoscopic Drainage in Children with Pancreatic Fluid Collections: A Systematic Review and Meta-Analysis. Letter from the Chair SEIS Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory Management, ISMM 2018, Philadelphia, PA, USA, June 18, 2018 Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2018, Philadelphia, PA, USA, June 19-20, 2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1