A Note on Bayesian and Maximum Likelihood Estimation of Scale Parameter of Log Gamma Distribution

N. Feroze, M. Aslam
{"title":"A Note on Bayesian and Maximum Likelihood Estimation of Scale Parameter of Log Gamma Distribution","authors":"N. Feroze, M. Aslam","doi":"10.5923/J.STATISTICS.20120205.05","DOIUrl":null,"url":null,"abstract":"In this paper, the prob lem o f estimating the scale parameter of log gamma distribution under Bayesian and maximu m likelihood framework has been addressed. The uniform and Jeffreys priors have been assumed for posterior analysis. The Bayes estimators and associated risks have been derived under five different loss functions. The credible intervals and highest posterior density intervals have been constructed under each prior. A simulat ion study has been carried out to illustrate the numerical applicat ions of the results and to compare the performance of different estimators. The purpose is to compare the performance of the estimators based on Bayesian and maximu m likelihood framewo rks. The performance of different Bayes estimators has also been compared using five d ifferent loss functions. The study indicated that for estimation of the said parameter, the Bayesian estimation can be preferred over maximu m likelihood estimation. While in case of the Bayesian estimation, the entropy loss function under Jeffreys can effectively be emp loyed.","PeriodicalId":91518,"journal":{"name":"International journal of statistics and applications","volume":"117 1","pages":"73-79"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.STATISTICS.20120205.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the prob lem o f estimating the scale parameter of log gamma distribution under Bayesian and maximu m likelihood framework has been addressed. The uniform and Jeffreys priors have been assumed for posterior analysis. The Bayes estimators and associated risks have been derived under five different loss functions. The credible intervals and highest posterior density intervals have been constructed under each prior. A simulat ion study has been carried out to illustrate the numerical applicat ions of the results and to compare the performance of different estimators. The purpose is to compare the performance of the estimators based on Bayesian and maximu m likelihood framewo rks. The performance of different Bayes estimators has also been compared using five d ifferent loss functions. The study indicated that for estimation of the said parameter, the Bayesian estimation can be preferred over maximu m likelihood estimation. While in case of the Bayesian estimation, the entropy loss function under Jeffreys can effectively be emp loyed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对数分布尺度参数的贝叶斯估计和极大似然估计
本文研究了在贝叶斯和极大似然框架下对数分布尺度参数的估计问题。后验分析假设了均匀和杰弗里斯先验。给出了五种不同损失函数下的贝叶斯估计量和相关风险。在每个先验条件下构造了可信区间和最高后验密度区间。为了说明结果的数值应用,并比较不同估计器的性能,进行了仿真研究。目的是比较基于贝叶斯和最大似然框架的估计器的性能。用五种不同的损失函数比较了不同贝叶斯估计器的性能。研究表明,对于上述参数的估计,贝叶斯估计优于极大似然估计。而对于贝叶斯估计,则可以有效地利用Jeffreys下的熵损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of the Non-Medical Use of Pharmaceutical Drugs among Tertiary Institution Students in South-East Nigeria Another Two-Parameter Poisson –Sujatha Distribution A New Method for Generating Distributions: An Application to Flow Data Weighted Quasi Lindley Distribution with Properties and Applications Household Poverty-Risk Analysis and Prediction Using Bayesian Ordinal Probit Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1