M. Elhassan, O. Keshtta, A. Berrim, E. Draoui, K. Mogensen, D. Levitt
{"title":"Design of Foam Gas Shut-Off Pilot for a Giant High-Temperature, High-Salinity Carbonate Reservoir","authors":"M. Elhassan, O. Keshtta, A. Berrim, E. Draoui, K. Mogensen, D. Levitt","doi":"10.2118/197322-ms","DOIUrl":null,"url":null,"abstract":"\n This paper describes preparations and planning for a campaign of foam gas shut-off pilot operations in a large carbonate reservoir located offshore Abu Dhabi containing an oil column in equilibrium with a large gas cap. Throughout the field history and due to the heterogeneity (permeability ranges from 5 mD to 1 D), the major challenge to produce the oil rim independently from the gas cap was how to control premature gas breakthrough in the oil producers. Mechanical interventions in high gas-oil ratio wells are particularly complicated due to the risk of losing oil potential and are generally unsuccessful.\n Injection of foam for gas shut-off (FGSO) is a near-wellbore treatment, which has been trialed elsewhere in the industry with some success. Foam can act as an auto-selective agent to shut-off confined gas inflow through a gravity-controlled source like coning or cusping, while oil breaks the foam, resulting in preferential oil flow and reduction in gas-oil ratio. In addition, this type of operation has been identified as an EOR enabler, because it can help prepare for the technical and logistical challenges of using EOR chemicals in the field, generate data useful for the modeling of surfactant and polymer under reservoir conditions, and mitigate early gas breakthrough in the case of gas-based EOR developments.\n For the reservoir in question, a key complicating factor was to identify a surfactant, which could generate strong foam in-situ (mobility reduction factor of 50) at harsh reservoir conditions (temperature of 220-230 °F and water salinity above 200,000 ppm, including 20,000 ppm divalents), with an acceptable level of adsorption. The candidate selection process took into consideration overall behavior of the reservoir as well as performance of the individual high-GOR wells. Target well selection criteria included homogeneity of permeability, an understanding of gas sources and their movement, and observation of a rate- or draw-down-dependent GOR.\n The experimental lab program involved testing several surfactant formulations in bulk as well as in corefloods with and without the presence of reservoir oil to evaluate foaming ability and level of gas flow reduction. One formulation showed the right level of in-situ mobility reduction, in addition to stability and moderate adsorption at the prevailing reservoir conditions, and was therefore selected for a pilot test involving four wells.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197322-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes preparations and planning for a campaign of foam gas shut-off pilot operations in a large carbonate reservoir located offshore Abu Dhabi containing an oil column in equilibrium with a large gas cap. Throughout the field history and due to the heterogeneity (permeability ranges from 5 mD to 1 D), the major challenge to produce the oil rim independently from the gas cap was how to control premature gas breakthrough in the oil producers. Mechanical interventions in high gas-oil ratio wells are particularly complicated due to the risk of losing oil potential and are generally unsuccessful.
Injection of foam for gas shut-off (FGSO) is a near-wellbore treatment, which has been trialed elsewhere in the industry with some success. Foam can act as an auto-selective agent to shut-off confined gas inflow through a gravity-controlled source like coning or cusping, while oil breaks the foam, resulting in preferential oil flow and reduction in gas-oil ratio. In addition, this type of operation has been identified as an EOR enabler, because it can help prepare for the technical and logistical challenges of using EOR chemicals in the field, generate data useful for the modeling of surfactant and polymer under reservoir conditions, and mitigate early gas breakthrough in the case of gas-based EOR developments.
For the reservoir in question, a key complicating factor was to identify a surfactant, which could generate strong foam in-situ (mobility reduction factor of 50) at harsh reservoir conditions (temperature of 220-230 °F and water salinity above 200,000 ppm, including 20,000 ppm divalents), with an acceptable level of adsorption. The candidate selection process took into consideration overall behavior of the reservoir as well as performance of the individual high-GOR wells. Target well selection criteria included homogeneity of permeability, an understanding of gas sources and their movement, and observation of a rate- or draw-down-dependent GOR.
The experimental lab program involved testing several surfactant formulations in bulk as well as in corefloods with and without the presence of reservoir oil to evaluate foaming ability and level of gas flow reduction. One formulation showed the right level of in-situ mobility reduction, in addition to stability and moderate adsorption at the prevailing reservoir conditions, and was therefore selected for a pilot test involving four wells.