Critical insights into modern hyperspectral image applications through deep learning

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery Pub Date : 2021-07-21 DOI:10.1002/widm.1426
Garima Jaiswal, Aruna Sharma, S. Yadav
{"title":"Critical insights into modern hyperspectral image applications through deep learning","authors":"Garima Jaiswal, Aruna Sharma, S. Yadav","doi":"10.1002/widm.1426","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging has shown tremendous growth over the past three decades. Hyperspectral imaging was evolved through remote sensing. Along, with the technological enhancements hyperspectral imaging has outgrown, conquering over other various application areas. In addition to it, data enriched data cubes with abundant spectral and spatial information works as perk for capturing, analyzing, reviewing, and interpreting results from data. This review concentrates on emerging application areas of hyperspectral imaging. Emerging application areas are selected in ways where there is a vast scope for future enhancements by exploiting cutting edge technology, that is, deep learning. Applications of hyperspectral imaging techniques in some selected areas (remote sensing, document forgery, history and archaeology conservation, surveillance and security, machine vision for fruit quality inspection, medical imaging) are focused. The review pivots around the publicly available datasets and features used domain wise. This review can act as a baseline for deep learning and machine vision experts, historical geographers, and scholars by providing them a view of how hyperspectral imaging is implemented in multiple domains along with future research prospects.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"102 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1426","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 19

Abstract

Hyperspectral imaging has shown tremendous growth over the past three decades. Hyperspectral imaging was evolved through remote sensing. Along, with the technological enhancements hyperspectral imaging has outgrown, conquering over other various application areas. In addition to it, data enriched data cubes with abundant spectral and spatial information works as perk for capturing, analyzing, reviewing, and interpreting results from data. This review concentrates on emerging application areas of hyperspectral imaging. Emerging application areas are selected in ways where there is a vast scope for future enhancements by exploiting cutting edge technology, that is, deep learning. Applications of hyperspectral imaging techniques in some selected areas (remote sensing, document forgery, history and archaeology conservation, surveillance and security, machine vision for fruit quality inspection, medical imaging) are focused. The review pivots around the publicly available datasets and features used domain wise. This review can act as a baseline for deep learning and machine vision experts, historical geographers, and scholars by providing them a view of how hyperspectral imaging is implemented in multiple domains along with future research prospects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习对现代高光谱图像应用的关键见解
在过去的三十年里,高光谱成像显示出巨大的增长。高光谱成像是从遥感发展而来的。随着技术的提高,高光谱成像已经超越了其他各种应用领域。此外,数据丰富的数据立方体具有丰富的光谱和空间信息,可以作为捕获、分析、审查和解释数据结果的额外功能。本文就高光谱成像的新兴应用领域作一综述。新兴应用领域的选择方式是,通过利用尖端技术(即深度学习),未来有很大的增强空间。重点介绍了高光谱成像技术在一些选定领域(遥感、文件伪造、历史和考古保护、监视和安全、水果质量检测的机器视觉、医学成像)的应用。审查围绕公开可用的数据集和使用领域明智的特征。这篇综述可以作为深度学习和机器视觉专家、历史地理学家和学者的基线,为他们提供了如何在多个领域实现高光谱成像以及未来研究前景的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
期刊最新文献
Research on mining software repositories to facilitate refactoring Use of artificial intelligence algorithms to predict systemic diseases from retinal images The benefits and dangers of using machine learning to support making legal predictions Sports analytics review: Artificial intelligence applications, emerging technologies, and algorithmic perspective ExplainFix: Explainable spatially fixed deep networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1