Depression Detection Using Combination of sMRI and fMRI Image Features

Marzieh Mousavian, Jianhua Chen, S. Greening
{"title":"Depression Detection Using Combination of sMRI and fMRI Image Features","authors":"Marzieh Mousavian, Jianhua Chen, S. Greening","doi":"10.1109/ICMLA52953.2021.00092","DOIUrl":null,"url":null,"abstract":"Automatic detection of Major Depression Disorder (MDD) from brain MRI images with machine learning has been an active area of study. In this paper several methods are explored for MDD detection by combining features from structural and functional brain MRI images, and combining Atlas-based and spatial cube-based features. Experiments demonstrate good classification performance on an imbalanced dataset. The paper also presents a visualization that captures the spatial overlapping between the top discriminating spatial cube pairs and the regions of interests in the Harvard Atlas.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"125 5 1","pages":"552-557"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic detection of Major Depression Disorder (MDD) from brain MRI images with machine learning has been an active area of study. In this paper several methods are explored for MDD detection by combining features from structural and functional brain MRI images, and combining Atlas-based and spatial cube-based features. Experiments demonstrate good classification performance on an imbalanced dataset. The paper also presents a visualization that captures the spatial overlapping between the top discriminating spatial cube pairs and the regions of interests in the Harvard Atlas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合sMRI和fMRI图像特征的抑郁症检测
利用机器学习技术从脑MRI图像中自动检测重度抑郁症(MDD)一直是一个活跃的研究领域。本文结合脑MRI结构和功能图像特征,结合基于atlas的特征和基于空间立方体的特征,探索了几种检测MDD的方法。实验证明了在不平衡数据集上具有良好的分类性能。本文还提出了一种可视化方法,该方法捕获了哈佛地图集中顶部区分空间立方体对与感兴趣区域之间的空间重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1