Aerodynamic optimization of airfoil based on deep reinforcement learning

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2023-03-01 DOI:10.1063/5.0137002
Jinhua Lou, Rong-Yawn Chen, Jiaqi Liu, Yue Bao, Y. You, Zhengwu Chen
{"title":"Aerodynamic optimization of airfoil based on deep reinforcement learning","authors":"Jinhua Lou, Rong-Yawn Chen, Jiaqi Liu, Yue Bao, Y. You, Zhengwu Chen","doi":"10.1063/5.0137002","DOIUrl":null,"url":null,"abstract":"The traditional optimization of airfoils relies on, and is limited by, the knowledge and experience of the designer. As a method of intelligent decision-making, reinforcement learning can be used for such optimization through self-directed learning. In this paper, we use the lift–drag ratio as the objective of optimization to propose a method for the aerodynamic optimization of airfoils based on a combination of deep learning and reinforcement learning. A deep neural network (DNN) is first constructed as a surrogate model to quickly predict the lift–drag ratio of the airfoil, and a double deep Q-network (double DQN) algorithm is then designed based on deep reinforcement learning to train the optimization policy. During the training phase, the agent uses geometric parameters of the airfoil to represent its state, adopts a stochastic policy to generate optimization experience, and uses a deterministic policy to modify the geometry of the airfoil. The DNN calculates changes in the lift–drag ratio of the airfoil as a reward, and the environment constantly feeds the states, actions, and rewards back to the agent, which dynamically updates the policy to retain positive optimization experience. The results of simulations show that the double DQN can learn the general policy for optimizing the airfoil to improve its lift–drag ratio to 71.46%. The optimization policy can be generalized to a variety of computational conditions. Therefore, the proposed method can rapidly predict the aerodynamic parameters of the airfoil and autonomously learn the optimization policy to render the entire process intelligent.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"96 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0137002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

The traditional optimization of airfoils relies on, and is limited by, the knowledge and experience of the designer. As a method of intelligent decision-making, reinforcement learning can be used for such optimization through self-directed learning. In this paper, we use the lift–drag ratio as the objective of optimization to propose a method for the aerodynamic optimization of airfoils based on a combination of deep learning and reinforcement learning. A deep neural network (DNN) is first constructed as a surrogate model to quickly predict the lift–drag ratio of the airfoil, and a double deep Q-network (double DQN) algorithm is then designed based on deep reinforcement learning to train the optimization policy. During the training phase, the agent uses geometric parameters of the airfoil to represent its state, adopts a stochastic policy to generate optimization experience, and uses a deterministic policy to modify the geometry of the airfoil. The DNN calculates changes in the lift–drag ratio of the airfoil as a reward, and the environment constantly feeds the states, actions, and rewards back to the agent, which dynamically updates the policy to retain positive optimization experience. The results of simulations show that the double DQN can learn the general policy for optimizing the airfoil to improve its lift–drag ratio to 71.46%. The optimization policy can be generalized to a variety of computational conditions. Therefore, the proposed method can rapidly predict the aerodynamic parameters of the airfoil and autonomously learn the optimization policy to render the entire process intelligent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的翼型气动优化
传统的翼型优化依赖于并受限于设计人员的知识和经验。强化学习作为一种智能决策的方法,可以通过自我导向学习来进行这种优化。本文以升阻比为优化目标,提出了一种基于深度学习和强化学习相结合的翼型气动优化方法。首先构建深度神经网络(DNN)作为替代模型快速预测翼型升阻比,然后基于深度强化学习设计双深度Q-network (double DQN)算法训练优化策略。在训练阶段,智能体以翼型的几何参数表示其状态,采用随机策略生成优化经验,采用确定性策略修改翼型的几何形状。DNN计算翼型升阻比的变化作为奖励,环境不断将状态、动作和奖励反馈给代理,代理动态更新策略以保持积极的优化经验。仿真结果表明,双DQN可以学习优化翼型的一般策略,将其升阻比提高到71.46%。该优化策略可以推广到各种计算条件下。因此,该方法可以快速预测翼型的气动参数,并自主学习优化策略,使整个过程智能化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
The impact of blood viscosity modeling on computational fluid dynamic simulations of pediatric patients with Fontan circulation. Meso-scale investigation on the permeability of frozen soils with the lattice Boltzmann method Computational investigation of both geometric and fluidic compressible turbulent thrust vectoring, using a Coanda based nozzle Directional self-migration of droplets on an inclined surface driven by wettability gradient Overlapping effect of detonation driving during multi-point initiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1