Many-body effects in third harmonic generation of graphene

H. Rostami, E. Cappelluti
{"title":"Many-body effects in third harmonic generation of graphene","authors":"H. Rostami, E. Cappelluti","doi":"10.1103/PHYSREVB.103.125415","DOIUrl":null,"url":null,"abstract":"The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is governed by the damping terms induced by the interactions. A controlled many-body description of the scattering processes is thus a compelling and desirable requirement. In this paper, using a Kadanoff-Baym approach, we systematically investigate the impact of many-body interaction on the third-harmonic generation (THG) of graphene, taking elastic impurity scattering as a benchmark example. We predict the onset in the mixed inter-intraband regime of novel incoherent features driven by the interaction at four- and five-photon transition frequencies in the third-harmonic optical conductivity with a spectral weight proportional to the scattering rate.We show also that, in spite of the complex many-body physics, the purely intraband term governing the limit $\\omega \\to 0$ resembles the constraints of the phenomenological model. We ascribe this agreement to the fulfilling of the conservation laws enforced by the conserving approach. The overlap with novel incoherent features and the impact of many-body driven multi-photon vertex couplings limit however severely the validity of phenomenological description.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.125415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is governed by the damping terms induced by the interactions. A controlled many-body description of the scattering processes is thus a compelling and desirable requirement. In this paper, using a Kadanoff-Baym approach, we systematically investigate the impact of many-body interaction on the third-harmonic generation (THG) of graphene, taking elastic impurity scattering as a benchmark example. We predict the onset in the mixed inter-intraband regime of novel incoherent features driven by the interaction at four- and five-photon transition frequencies in the third-harmonic optical conductivity with a spectral weight proportional to the scattering rate.We show also that, in spite of the complex many-body physics, the purely intraband term governing the limit $\omega \to 0$ resembles the constraints of the phenomenological model. We ascribe this agreement to the fulfilling of the conservation laws enforced by the conserving approach. The overlap with novel incoherent features and the impact of many-body driven multi-photon vertex couplings limit however severely the validity of phenomenological description.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯三次谐波产生中的多体效应
石墨烯在太赫兹波段的三次谐波产生的低能(带内)范围由相互作用引起的阻尼项控制。因此,对散射过程进行受控的多体描述是一个迫切而理想的要求。本文采用Kadanoff-Baym方法,以弹性杂质散射为基准,系统地研究了多体相互作用对石墨烯三次谐波产生(THG)的影响。我们预测了在三次谐波光学电导率中,由四光子和五光子跃迁频率的相互作用驱动的新型非相干特征在混合带内区域的开始,其谱权与散射率成正比。我们还表明,尽管有复杂的多体物理,控制极限的纯带内项类似于现象学模型的约束。我们将这一协议归因于通过保护方法执行的保护法律的履行。然而,新的非相干特征的重叠和多体驱动的多光子顶点耦合的影响严重限制了现象学描述的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1