An experimental study of liquid unloading in the curve section of horizontal gas wells

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-13 DOI:10.17632/X85BYRFWNV.1
Shuzhe Shi
{"title":"An experimental study of liquid unloading in the curve section of horizontal gas wells","authors":"Shuzhe Shi","doi":"10.17632/X85BYRFWNV.1","DOIUrl":null,"url":null,"abstract":"Liquid unloading is a very common and important issue in horizontal gas wells, and the presence of curve sections increases the complexity of the phenomenon and its study. Liquid loading in a gas well will sharply reduce production, therefore, the liquid-unloading onset of different curved pipes is essential to gas production. In this work, liquid-unloading onset experiments were conducted in curved pipes with different curvatures. Then, the critical gas velocity VsgCR can be determined according to the measured pressure gradients, liquid holdup, and liquid film reversal. This work analyzes the factors which will lead to the liquid unloading and explores the trend of the pipe curvature’s influence on the liquid unloading under laboratory conditions. The experimental results show that the critical gas velocity rises with the increase of pipe curvature, the increase is mainly due to the centrifugal force. The present work also compares the predicted results of the OLGA model and Beggs–Brill model with experimental data. The comparison results indicate that both models fit relatively well to the experimental data at the low superficial gas velocity, and both models have poor performance at high superficial gas velocity. The OLGA model fits the experimental data better than the Beggs–Brill model at high superficial gas velocity. The error analysis shows that most of the predicted data is not in good agreement with experimental data. Some errors between experimental data and calculation results are out of the range of 50%.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"139 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17632/X85BYRFWNV.1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid unloading is a very common and important issue in horizontal gas wells, and the presence of curve sections increases the complexity of the phenomenon and its study. Liquid loading in a gas well will sharply reduce production, therefore, the liquid-unloading onset of different curved pipes is essential to gas production. In this work, liquid-unloading onset experiments were conducted in curved pipes with different curvatures. Then, the critical gas velocity VsgCR can be determined according to the measured pressure gradients, liquid holdup, and liquid film reversal. This work analyzes the factors which will lead to the liquid unloading and explores the trend of the pipe curvature’s influence on the liquid unloading under laboratory conditions. The experimental results show that the critical gas velocity rises with the increase of pipe curvature, the increase is mainly due to the centrifugal force. The present work also compares the predicted results of the OLGA model and Beggs–Brill model with experimental data. The comparison results indicate that both models fit relatively well to the experimental data at the low superficial gas velocity, and both models have poor performance at high superficial gas velocity. The OLGA model fits the experimental data better than the Beggs–Brill model at high superficial gas velocity. The error analysis shows that most of the predicted data is not in good agreement with experimental data. Some errors between experimental data and calculation results are out of the range of 50%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水平井曲线段卸液试验研究
卸液是水平气井中非常常见和重要的问题,而曲线段的存在增加了卸液现象及其研究的复杂性。在气井中充液会导致产量急剧下降,因此,不同弯管的卸液开始时间对气井的产量至关重要。本文在不同曲率的弯曲管道中进行了起卸液实验。然后,根据测得的压力梯度、液含率和液膜反转,确定临界气速VsgCR。分析了导致液体卸载的因素,探讨了实验室条件下管道曲率对液体卸载的影响趋势。实验结果表明,临界气体速度随管道曲率的增大而增大,其增加主要是由于离心力的作用。本文还将OLGA模型和Beggs-Brill模型的预测结果与实验数据进行了比较。对比结果表明,两种模型在低表面气速条件下与实验数据拟合较好,而在高表面气速条件下,两种模型的拟合效果较差。在高表面气速下,OLGA模型比begs - brill模型更符合实验数据。误差分析表明,大部分预测数据与实验数据不太吻合。实验数据与计算结果之间存在50%以上的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1