Controlled sensing for hypothesis testing

S. Nitinawarat, George K. Atia, V. Veeravalli
{"title":"Controlled sensing for hypothesis testing","authors":"S. Nitinawarat, George K. Atia, V. Veeravalli","doi":"10.1109/ICASSP.2012.6289111","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of multiple hypothesis testing with observation control is considered. The structure of the optimal controller under various asymptotic regimes is studied. First, a setup with a fixed sample size is considered. In this setup, the asymptotic quantity of interest is the optimal exponent for the maximal error probability. For the case of binary hypothesis testing, it is shown that the optimal error exponent corresponds to the maximum Chernoff information over the choice of controls. It is also shown that a pure stationary control policy, i.e., a fixed policy which does not depend on specific realizations of past measurements and past controls (open-loop), is asymptotically optimal even among the class of all causal control policies. We also derive lower and upper bounds for the optimal error exponent for the case of multiple hypothesis testing. Second, a sequential setup is considered wherein the controller can also decide when to stop taking observations. In this case, the objective is to minimize the expected stopping time subject to the constraints of vanishing error probabilities under each hypothesis. A sequential test is proposed for testing multiple hypotheses and is shown to be asymptotically optimal.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6289111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper, the problem of multiple hypothesis testing with observation control is considered. The structure of the optimal controller under various asymptotic regimes is studied. First, a setup with a fixed sample size is considered. In this setup, the asymptotic quantity of interest is the optimal exponent for the maximal error probability. For the case of binary hypothesis testing, it is shown that the optimal error exponent corresponds to the maximum Chernoff information over the choice of controls. It is also shown that a pure stationary control policy, i.e., a fixed policy which does not depend on specific realizations of past measurements and past controls (open-loop), is asymptotically optimal even among the class of all causal control policies. We also derive lower and upper bounds for the optimal error exponent for the case of multiple hypothesis testing. Second, a sequential setup is considered wherein the controller can also decide when to stop taking observations. In this case, the objective is to minimize the expected stopping time subject to the constraints of vanishing error probabilities under each hypothesis. A sequential test is proposed for testing multiple hypotheses and is shown to be asymptotically optimal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于假设检验的控制传感
本文考虑了具有观测控制的多重假设检验问题。研究了各种渐近状态下最优控制器的结构。首先,考虑一个固定样本量的设置。在这种设置中,感兴趣的渐近量是最大错误概率的最佳指数。对于二元假设检验,结果表明,最优误差指数对应于控制选择的最大切尔诺夫信息。本文还证明了一个纯平稳控制策略,即一个不依赖于过去测量和过去控制(开环)的具体实现的固定策略,即使在所有因果控制策略类中也是渐近最优的。我们还推导了多重假设检验的最优误差指数的下界和上界。其次,考虑顺序设置,其中控制器也可以决定何时停止观察。在这种情况下,目标是在每个假设的误差概率消失的约束下最小化期望停止时间。提出了一个用于检验多个假设的序贯检验,并证明了它是渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Multilevel Quantization for Distributed Detection Linear Model-Based Intra Prediction in VVC Test Model Practical Concentric Open Sphere Cardioid Microphone Array Design for Higher Order Sound Field Capture Embedding Physical Augmentation and Wavelet Scattering Transform to Generative Adversarial Networks for Audio Classification with Limited Training Resources Improving ASR Robustness to Perturbed Speech Using Cycle-consistent Generative Adversarial Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1