Comparisson of Recrystallization Kinetics and Grain Growth in Polycrystalline Shape Memory Alloys

M. Nava, E. Lima, P. C. Lima
{"title":"Comparisson of Recrystallization Kinetics and Grain Growth in Polycrystalline Shape Memory Alloys","authors":"M. Nava, E. Lima, P. C. Lima","doi":"10.17265/2161-6213/2020.3-4.005","DOIUrl":null,"url":null,"abstract":"The non-ferrous SMAs (shape memory alloys) have, normally, two problems that hinder the use in industrial scale: the natural aging and grain growth. The first degrades the memory effect, while the second, observed during the alloy’s mechanical processing, modifies the phase transformation temperatures. Thus, the study of recrystallization kinetics is important for enabling the control of hardened state as a function of treatment time without allowing the exaggerated grain growth. The objective of this study is to determine the recrystallization kinetics in different SMAs (Cu-14Al-4Ni, Cu-12Al-0.5Be and Ni-42Ti), based on an empirical law of J-M-A (Johnson-Mehl-Avrami), as well as their activation energies for grain growth process according to the empirical Arrhenius law.Quantitative evaluations of the grain growth kinetics over a wide range of indicated DSC (differential scanning calorimetry) temperatures have been performed. The results show that the alloy less susceptible to aging in temperatures below the recrystallization peak is the Ni-42Ti, because it presented the highest activation energy, followed by the Cu-14Al-4Ni. The equations that describe the recrystallization kinetics follow the empirical law of J-M-A. The recrystallization kinetics accompanied by hardness variation was an important tool, working as an advisor for selection of treatment time as a function of temperature.","PeriodicalId":16171,"journal":{"name":"Journal of materials science & engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials science & engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17265/2161-6213/2020.3-4.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The non-ferrous SMAs (shape memory alloys) have, normally, two problems that hinder the use in industrial scale: the natural aging and grain growth. The first degrades the memory effect, while the second, observed during the alloy’s mechanical processing, modifies the phase transformation temperatures. Thus, the study of recrystallization kinetics is important for enabling the control of hardened state as a function of treatment time without allowing the exaggerated grain growth. The objective of this study is to determine the recrystallization kinetics in different SMAs (Cu-14Al-4Ni, Cu-12Al-0.5Be and Ni-42Ti), based on an empirical law of J-M-A (Johnson-Mehl-Avrami), as well as their activation energies for grain growth process according to the empirical Arrhenius law.Quantitative evaluations of the grain growth kinetics over a wide range of indicated DSC (differential scanning calorimetry) temperatures have been performed. The results show that the alloy less susceptible to aging in temperatures below the recrystallization peak is the Ni-42Ti, because it presented the highest activation energy, followed by the Cu-14Al-4Ni. The equations that describe the recrystallization kinetics follow the empirical law of J-M-A. The recrystallization kinetics accompanied by hardness variation was an important tool, working as an advisor for selection of treatment time as a function of temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多晶形状记忆合金再结晶动力学与晶粒生长的比较
有色金属形状记忆合金通常存在自然时效和晶粒生长两大阻碍其工业化应用的问题。前者降低了记忆效应,而后者在合金的机械加工过程中观察到,改变了相变温度。因此,研究再结晶动力学对于控制硬化状态作为处理时间的函数而不允许晶粒过度长大是很重要的。本研究的目的是根据J-M-A (Johnson-Mehl-Avrami)经验定律确定不同sma (Cu-14Al-4Ni、Cu-12Al-0.5Be和Ni-42Ti)的再结晶动力学,并根据经验Arrhenius定律确定它们在晶粒生长过程中的活化能。在指示的DSC(差示扫描量热法)温度范围内对晶粒生长动力学进行了定量评估。结果表明:Ni-42Ti合金在再结晶峰以下的温度下不容易时效,其活化能最高,其次是Cu-14Al-4Ni;描述再结晶动力学的方程遵循J-M-A的经验规律。伴随硬度变化的再结晶动力学是一个重要的工具,可以作为选择处理时间作为温度函数的顾问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microstructured Optical Fibers Made of Chalcogenide Glass for the Generation of Optical Functions Investigation of Striations of Tellurium Inclusion in (Cd,Zn)Te Crystals Grown by Travelling Heater Method Modeling and Simulation of ΔH in Solid State Synthesis of Nanocomposites Al-Cu-Zr Creative Economy and Materials Science & Engineering Effect of Universal Primers on the Tensile Bond Strength between Zirconia and Resin Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1