Recent progress on 3D-printed gelatin methacrylate-based biomaterials for articular cartilage repair  

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2023-08-01 DOI:10.36922/ijb.0116
Liang Chen, Guowei Huang, Ming-Han Yu, Yang Liu, Tao Cheng, Aiguo Li, Wen Wang, Shengnan Qin
{"title":"Recent progress on 3D-printed gelatin methacrylate-based biomaterials for articular cartilage repair  ","authors":"Liang Chen, Guowei Huang, Ming-Han Yu, Yang Liu, Tao Cheng, Aiguo Li, Wen Wang, Shengnan Qin","doi":"10.36922/ijb.0116","DOIUrl":null,"url":null,"abstract":"The structure and composition of articular cartilage is complex, and its self-healing ability is limited, and thus, it is difficult to achieve ideal healing once the articular cartilage is damaged. Recently, three-dimensional (3D) printing technology has provided a new possibility for the repair of articular cartilage. Engineered cartilage tissues can be fabricated by superimposing customized inks, considering different geometric structures and components of tissues. 3D printing can be effectively used to manufacture high-precision structures with complex geometry, solving the shortcomings of traditional scaffold fabrication techniques. Gelatin methacrylate (GelMA) is modified gelatin and is currently a widely used 3D printing ink due to its photocrosslinking properties. With good biocompatibility and tunable physical properties, it can provide a good scaffold platform for cell proliferation and growth factor release. Given that the role of 3D printing technology in cartilage repair has been widely reported, this article reviews the research progress of 3D-printed GelMA-based biomaterials in articular cartilage tissue engineering. We focus primarily on how 3D printing technology addresses the existing challenges inherent to the field of articular cartilage tissue engineering. We accentuate the modifications implemented in GelMA-based 3D printing scaffolds to optimize articular cartilage regeneration. Additionally, we provide a comprehensive summary of the utilization of GelMA-based biomaterials incorporating various cells, growth factors, or other tissue components and highlight how these adaptations, in conjunction with the benefits of 3D printing technology, facilitate improvements the articular cartilage repair.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.0116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The structure and composition of articular cartilage is complex, and its self-healing ability is limited, and thus, it is difficult to achieve ideal healing once the articular cartilage is damaged. Recently, three-dimensional (3D) printing technology has provided a new possibility for the repair of articular cartilage. Engineered cartilage tissues can be fabricated by superimposing customized inks, considering different geometric structures and components of tissues. 3D printing can be effectively used to manufacture high-precision structures with complex geometry, solving the shortcomings of traditional scaffold fabrication techniques. Gelatin methacrylate (GelMA) is modified gelatin and is currently a widely used 3D printing ink due to its photocrosslinking properties. With good biocompatibility and tunable physical properties, it can provide a good scaffold platform for cell proliferation and growth factor release. Given that the role of 3D printing technology in cartilage repair has been widely reported, this article reviews the research progress of 3D-printed GelMA-based biomaterials in articular cartilage tissue engineering. We focus primarily on how 3D printing technology addresses the existing challenges inherent to the field of articular cartilage tissue engineering. We accentuate the modifications implemented in GelMA-based 3D printing scaffolds to optimize articular cartilage regeneration. Additionally, we provide a comprehensive summary of the utilization of GelMA-based biomaterials incorporating various cells, growth factors, or other tissue components and highlight how these adaptations, in conjunction with the benefits of 3D printing technology, facilitate improvements the articular cartilage repair.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3d打印甲基丙烯酸明胶基关节软骨修复生物材料的研究进展
关节软骨的结构和组成复杂,其自愈能力有限,因此,一旦关节软骨受损,很难达到理想的愈合。近年来,三维打印技术为关节软骨的修复提供了新的可能。考虑到不同的几何结构和组织成分,工程软骨组织可以通过叠加定制墨水来制造。3D打印可以有效地用于制造具有复杂几何形状的高精度结构,解决了传统支架制造技术的不足。凝胶甲基丙烯酸酯(GelMA)是一种改性明胶,由于其光交联特性,目前是一种广泛使用的3D打印油墨。具有良好的生物相容性和可调节的物理性能,可为细胞增殖和生长因子释放提供良好的支架平台。鉴于3D打印技术在软骨修复中的作用已被广泛报道,本文综述了3D打印gelma基生物材料在关节软骨组织工程中的研究进展。我们主要关注3D打印技术如何解决关节软骨组织工程领域固有的现有挑战。我们强调在基于gelma的3D打印支架中实施的修改,以优化关节软骨再生。此外,我们还全面总结了gelma基生物材料的利用,这些生物材料包含各种细胞、生长因子或其他组织成分,并强调了这些适应性如何与3D打印技术的优势相结合,促进了关节软骨修复的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Methacrylic anhydride-assisted one-step in-situ extrusion 3D bioprinting of collagen hydrogels for enhanced full-thickness skin regeneration Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications Experimental and numerical approaches for optimizing conjunction area design to enhance switching efficiency in single-nozzle multi-ink bioprinting systems Osteocytic PGE2 receptors EP2/4 signaling create a physiological osteogenic microenvironment in polycaprolactone 3D module Design and fabrication of anisotropic SiO2 gyroid bioscaffolds with tunable properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1