{"title":"Abnormal retention of s-triazine herbicides on porous graphitic carbon","authors":"Oksana I. Grinevich, Z. Khesina, A. Buryak","doi":"10.1515/revac-2022-0029","DOIUrl":null,"url":null,"abstract":"Abstract Porous graphitic carbon (PGC) is a widely used stationary phase for reversed-phase high-performance liquid chromatography (HPLC) that allows separation of structurally similar compounds retained in mixed form on a flat graphite surface. Such a stationary phase can be used in analytical chemistry to provide good separation and selectivity in pesticide monitoring. In this article, we studied the chromatographic behavior of five common triazine herbicides (simazine, atrazine, desmetryn, propazine, prometryn) on PGC vis-à-vis octadecyl-functionalized silica gel (ODS). It was found that the herbicides studied have an abnormal elution order on PGC compared to ODS. PGC was also characterized by higher selectivity of analyte separation. This behavior of triazine herbicides on PGC cannot be explained either with the help of existing theory or by mathematical modeling of adsorption processes on graphite. Therefore, we have proposed a possible retention mechanism, explaining the effects observed, due to the shielding of the amino group in the triazine ring by alkyl substituents, which decreases the “polar retention effect” of PGC. Satisfactory separation efficacy was obtained with the proposed analytical method, using convenient UV-detection and without resort to laborious techniques such as HPLC coupled with mass spectrometry.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"111 1","pages":"1 - 9"},"PeriodicalIF":3.6000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2022-0029","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Porous graphitic carbon (PGC) is a widely used stationary phase for reversed-phase high-performance liquid chromatography (HPLC) that allows separation of structurally similar compounds retained in mixed form on a flat graphite surface. Such a stationary phase can be used in analytical chemistry to provide good separation and selectivity in pesticide monitoring. In this article, we studied the chromatographic behavior of five common triazine herbicides (simazine, atrazine, desmetryn, propazine, prometryn) on PGC vis-à-vis octadecyl-functionalized silica gel (ODS). It was found that the herbicides studied have an abnormal elution order on PGC compared to ODS. PGC was also characterized by higher selectivity of analyte separation. This behavior of triazine herbicides on PGC cannot be explained either with the help of existing theory or by mathematical modeling of adsorption processes on graphite. Therefore, we have proposed a possible retention mechanism, explaining the effects observed, due to the shielding of the amino group in the triazine ring by alkyl substituents, which decreases the “polar retention effect” of PGC. Satisfactory separation efficacy was obtained with the proposed analytical method, using convenient UV-detection and without resort to laborious techniques such as HPLC coupled with mass spectrometry.
期刊介绍:
Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.