Heming Zhang, S Peter Goedegebuure, Li Ding, David DeNardo, Ryan C Fields, Yixin Chen, Philip Payne, Fuhai Li
{"title":"M3NetFlow: A novel multi-scale multi-hop graph AI model for integrative multi-omic data analysis.","authors":"Heming Zhang, S Peter Goedegebuure, Li Ding, David DeNardo, Ryan C Fields, Yixin Chen, Philip Payne, Fuhai Li","doi":"10.1101/2023.06.15.545130","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-omic data-driven studies, characterizing complex disease signaling system from multiple levels, are at the forefront of precision medicine and healthcare. The integration and interpretation of multi-omic data are essential for identifying molecular targets and deciphering core signaling pathways of complex diseases. However, it remains an open problem due the large number of biomarkers and complex interactions among them. In this study, we propose a novel Multi-scale Multi-hop Multi-omic graph model, <i>M3NetFlow</i>, to facilitate generic multi-omic data analysis to rank targets and infer core signaling flows/pathways. To evaluate M3NetFlow, we applied it in two independent multi-omic case studies: 1) uncovering mechanisms of synergistic drug combination response (defined as anchor-target guided learning), and 2) identifying biomarkers and pathways of Alzheimer 's disease (AD). The evaluation and comparison results showed <i>M3NetFlow</i> achieves the best prediction accuracy (accurate), and identifies a set of essential targets and core signaling pathways (interpretable). The model can be directly applied to other multi-omic data-driven studies. The code is publicly accessible at: https://github.com/FuhaiLiAiLab/M3NetFlow.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"30 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.15.545130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-omic data-driven studies, characterizing complex disease signaling system from multiple levels, are at the forefront of precision medicine and healthcare. The integration and interpretation of multi-omic data are essential for identifying molecular targets and deciphering core signaling pathways of complex diseases. However, it remains an open problem due the large number of biomarkers and complex interactions among them. In this study, we propose a novel Multi-scale Multi-hop Multi-omic graph model, M3NetFlow, to facilitate generic multi-omic data analysis to rank targets and infer core signaling flows/pathways. To evaluate M3NetFlow, we applied it in two independent multi-omic case studies: 1) uncovering mechanisms of synergistic drug combination response (defined as anchor-target guided learning), and 2) identifying biomarkers and pathways of Alzheimer 's disease (AD). The evaluation and comparison results showed M3NetFlow achieves the best prediction accuracy (accurate), and identifies a set of essential targets and core signaling pathways (interpretable). The model can be directly applied to other multi-omic data-driven studies. The code is publicly accessible at: https://github.com/FuhaiLiAiLab/M3NetFlow.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO