Plant-based Isoquinoline Alkaloids: A Chemical and Pharmacological Profile of Some Important Leads

Arjun Singh
{"title":"Plant-based Isoquinoline Alkaloids: A Chemical and Pharmacological Profile of Some Important Leads","authors":"Arjun Singh","doi":"10.52711/0974-4150.2023.00008","DOIUrl":null,"url":null,"abstract":"Plant-based products are a one-of-a-kind source of favoured molecules with a wide scaffold variety and broad multi-target potential for the treatment of complicated disorders. Among multi-target NPs, alkaloids have showed anti-inflammatory, anticancer, cardioprotective, and neuroprotective effects, supporting their promise in the treatment of chronic multifactorial disorders. Several recent investigations have revealed that isoquinoline alkaloids (IAs) have multimodal potential, sparking growing interest in the polypharmacological research of these small molecules, particularly in the field of neurological illnesses and cancer. IAs are a broad and diversified category of nitrogenous compounds that are extensively dispersed in living organisms, mostly in plants family. Isoquinolines are known as highly conserved metabolites in early vascular plants at the chemotaxonomic level; moreover, biochemical and molecular phylogenetic investigations have revealed that these alkaloids play an evolutionarily monophyletic role in basal angiosperms.As a result, medicinal chemistry has been experimenting with various ways in order to overcome the constraints of existing paradigms and increase the effectiveness of novel therapeutic molecules. In this context, the search or design of multi-target medications has shown an accelerated breakthrough; in fact, this strategy has sparked the interest of both the scientific community and the pharmaceutical business, allowing several multimodal agents already on the market to be positioned.","PeriodicalId":8550,"journal":{"name":"Asian Journal of Research in Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52711/0974-4150.2023.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-based products are a one-of-a-kind source of favoured molecules with a wide scaffold variety and broad multi-target potential for the treatment of complicated disorders. Among multi-target NPs, alkaloids have showed anti-inflammatory, anticancer, cardioprotective, and neuroprotective effects, supporting their promise in the treatment of chronic multifactorial disorders. Several recent investigations have revealed that isoquinoline alkaloids (IAs) have multimodal potential, sparking growing interest in the polypharmacological research of these small molecules, particularly in the field of neurological illnesses and cancer. IAs are a broad and diversified category of nitrogenous compounds that are extensively dispersed in living organisms, mostly in plants family. Isoquinolines are known as highly conserved metabolites in early vascular plants at the chemotaxonomic level; moreover, biochemical and molecular phylogenetic investigations have revealed that these alkaloids play an evolutionarily monophyletic role in basal angiosperms.As a result, medicinal chemistry has been experimenting with various ways in order to overcome the constraints of existing paradigms and increase the effectiveness of novel therapeutic molecules. In this context, the search or design of multi-target medications has shown an accelerated breakthrough; in fact, this strategy has sparked the interest of both the scientific community and the pharmaceutical business, allowing several multimodal agents already on the market to be positioned.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物基异喹啉生物碱:一些重要线索的化学和药理学概况
基于植物的产品是一种独特的有利分子来源,具有广泛的支架种类和广泛的多靶点潜力,可用于治疗复杂疾病。在多靶点NPs中,生物碱显示出抗炎、抗癌、心脏保护和神经保护作用,支持它们在治疗慢性多因素疾病方面的前景。最近的一些研究表明,异喹啉生物碱(IAs)具有多模态潜力,引起了人们对这些小分子的多药理学研究的兴趣,特别是在神经系统疾病和癌症领域。IAs是广泛分布于生物体内的一类氮化合物,主要分布于植物科。异喹啉在早期维管植物的化学分类水平上被认为是高度保守的代谢物;此外,生物化学和分子系统发育研究表明,这些生物碱在基生被子植物中起着单系进化作用。因此,药物化学一直在尝试各种方法,以克服现有范式的限制,提高新的治疗分子的有效性。在这种背景下,多靶点药物的研究或设计已经显示出加速突破;事实上,这一策略引起了科学界和制药企业的兴趣,使市场上已有的几种多模式药物得以定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethnopharmacological, Phytochemical, Pharmacognostical, and Clinical significance of Andrographis paniculata (King of bitters): An Overview Kinetic and Isotherm Modelling of adsorption of Cr3+ metal ions from Tannery wastewater on to unmodified and acid-modified Arabica coffee husks biosorbents Extraction and Standardisation of Acid Phosphatase from the seeds of Abelmoschus esculentus (Okra) In-vivo Studies conducted following the success In-vitro and Dissemination of Anticancer Clinical Trials Trace level Determination of 2-(3-(trifluoromethyl)phenyl)propanal in Calcium Sensing Receptor drug by GCMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1